

Draft for Discussion Purposes

Annual CRR Auction Proposed NPRR Discussion Points

May 25, 2011

Key Objective of NPRR Proposal is to Allow All Market Participants to Better Manage Congestion Risk

Objectives

- 1) Increase number of opportunities to hedge risk
- 2) Increase market liquidity and price transparency in an orderly fashion
- 3) Appropriately size collateral requirements associated with hedging congestion risk
- 4) Limit the likelihood that a CRR position already taken by a market participant prompts the party to stand in the way of future low / no cost transmission solutions

How Achieved....

- Implement rolling auctions
 - Will provide a number of opportunities to hedge risk for any given period
 - Provides multiple price signals
 - Incremental capacity for each delivery period released in each auction - ensures grid is not oversold in forward periods
- Use market signals vs. historical data to calculate collateral requirements
 - Appropriately sizing collateral requirements to account for credit risk should enable a more active market

Increasing the number of opportunities available to hedge congestion risk for any given period will not only provide a more liquid congestion market, but also provide market based signals from which to calculate collateral requirements

Three Key Elements to Proposed NPRR

- 1. Implement rolling auction no later than 3/31/12, however conduct a onetime annual auction in November with some modifications to the current protocol
- 2. Once rolling auction is implemented there will be <u>no change</u> to the way the delivery month and prompt month are currently collateralized
- 3. Forward months will be collateralized based on mark to market exposure plus initial margin adder

Given the System and Time Constraints for Implementation of a Rolling Auction, a Modified Annual Auction Is Proposed

The following modifications are proposed to the currently planned annual auction:

- Modify pre-auction collateral requirements such that maximum exposure is collateralized, not the sum of all bids (methodology would carry forward to rolling auction)
 - Would likely represent a relatively large decrease in pre-auction collateral requirements for those market participants who submit auction requirements based on a bid curve (see next slide for an example)
- Eliminate second year of auction and reduce capacity auctioned in year one from 55% each month to 20%
 - Would ensure that a meaningful amount of capacity would still be available for rolling auction while allowing for forward market hedging
 - Would be consistent with objective of ensuring that no significant forward positions are taken by any one market participant
- A key consideration when evaluating whether to have a one-time annual auction before the rolling auction is that two different methodologies for settlement and collateralization will be in place for the same delivery months

Current Pre Auction Collateral Requirements Overstate Maximum Credit Exposure

Example: Collateral Requirements of a Single Path (assuming same tenor and product type)

\$/MWh

 Current protocol requires that pre-auction bids be collateralized at the sum of all bids

-Equal to \$640 in the example

- This methodology will overstate maximum credit exposure when multiple bids are submitted for the same path (assuming same tenor and product type)
- For bids such as these the actual maximum credit exposure would be equal to the sum of all volumes multiplied by the lowest bid price
 - -Equal to \$540 in the example (shaded area on chart)

The maximum credit exposure under the above bidding scenario is \$540, vs. the current protocol requirements of \$640

Three Key Elements to Proposed NPRR

- 1. Implement rolling auction no later than 3/31/12, however conduct a onetime annual auction in November with some modifications to the current protocol
- 2. Once rolling auction is implemented <u>there will be no change</u> to the way the delivery month and prompt month are currently collateralized
- 3. Forward months will be collateralized based on mark to market exposure plus initial margin adder

Current Methodology For Collateralizing Prompt and Delivery Months Will Remain in Place for the Rolling Auction

- Once rolling auction is implemented there will be <u>no change</u> to the way the delivery month and prompt month are currently collateralized
 - Prompt month collateralized at full notional value plus \$0.75/MWh adder to account for potential risk between invoice price and settlement
 - Once invoice is paid, the delivery month collateral requirements based on risk between invoice price and day ahead settlement
- The following is proposed for defining "prompt month" and "delivery month"
 - Prompt Month represents the delivery month that immediately follows the month the auction takes place e.g. January is the prompt month for the auction that takes place in December
 - A forward month will become a prompt month at the time of credit lock minus 5 days e.g. February will become the prompt month 5 days before the credit lock in the January auction
 - Rationale is that in the event of default, there is still an opportunity to auction CRR volumes at the next auction up until there is an operational limitation (note -5 days is an estimate)
 - The prompt month becomes the delivery month as soon as the invoice is paid through to the final day of settlement e.g. when volumes awarded for the January delivery month in the December auction are paid, January becomes the delivery month until the last day of January.
 - Will result in an overlap of delivery months e.g. February invoice will be paid in January

Three Key Elements to Proposed NPRR

- 1. Implement rolling auction no later than 3/31/12, however conduct a onetime annual auction in November with some modifications to the current protocol
- 2. Once rolling auction is implemented <u>there will be no change</u> to the way the delivery month and prompt month are currently collateralized
- 3. Forward months will be collateralized based on mark to market exposure plus initial margin adder

Key Principal of Proposed Methodology is That Forward Months Have Value That Can Be Realized Via Subsequent Auctions

Description

Fwd Mths Credit Risk	 Willingness of a market participant to fulfill obligation if awarded CRR becomes "out of the money"
Current Collateral Requirements	 Pre-auction requirements of full notional value of sum of all forward month bids/offers <i>plus</i> a \$0.75/MWh adder Post-auction requirements of full notional value of all forward months based on awarded volumes and cleared prices Pre-payment of the notional value of all awarded forward volumes <i>plus</i> future potential exposure based on average weighted historical DAM prices
Considerations	 In the event of market participant default, forward month CRR's still has value as can be re-sold in subsequent auctions

Historical DAM prices are not a good indicator of forward month CRR prices

Proposed Collateral **Requirements**

- Collateralize for mark to market exposure equal to difference between invoice price and new auction clearing price for that particular CRR instrument if "out of the money"
 - CRR account holders will be able to net in the money positions with out of the money positions for both intra month and inter month positions
- In addition an initial margin adder will be applied to all forward volumes and will be equal to
- Risk of price move between auctions
- Risk of change to grid between auctions (State change)
- Settlement of invoice to occur in month before delivery at the same time auction invoice is paid
 - More closely matches up CRR revenues and expenditures

Draft -Confidential - Not for Distribution

Example – Timeline of Collateral Requirements

	-											Mth	12				
						Jan		Feb	rv.	1ar		Apr _	≥		•	Prompt month fully collateralized at bid price plus prompt	
December	Pre-Auction	Credit Lock	Bid Volume	MWh		1,000		800		500		-	1			mth adder as no further opportunity to run auction	
	Activities	Collateral	Bid Price	\$/MWh	Ś	3.50	Ś	3.50	Ś	3.50	Ś	-		/		Forward adder ("Initial Margin") used to collateralize forward	
			Collateral Adder	\$/MWh	Ś	0.75	Ś	0.50	Ś	0.50				/_		month bids	
			Total Collateral	\$		4,250		400		250		-					
	Austion		Clearing Drice	¢/AAIA/b	ć	2.00	ć	2.00	ć	2.00	ć	2.00	1	1	_		
	Auction		cleaning Price	<i>Ş</i> / WI WI II	Ş	3.00	Ş	3.00	Ş	3.00	Ş	3.00			•	Prompt month fully collateralized at awarded price plus	
	Post Auction	Awarded CRR	Awarded Volume	MWh		1,000		800		500		-				adder to reflect DAM market settlement risk	
	Collateral	Collateral	Awarded Price	\$/MWh	\$	3.00	\$	3.00	\$	3.00	\$	-			•	Continue to post Initial Margin for forward months to mitigate	
			Collateral Adder	\$/MWh	\$	0.70	\$	0.50	\$	0.50						risk of intra-month price change	
			Total Collateral	\$	\$	3,700		400		250		-			_		
	Settlement		Invoice Payment	\$	\$	3,000	\$	-	\$	-	\$	-	_			Settlement of prompt month only	
	Intra Auction C	ollateral	Awarded Volume	MWh		1,000		800		500							
			Collateral Adder	\$/MWh	\$	0.70	\$	0.50	\$	0.50				1	•	In period between auctions continue to post collateral in	
			Total Collateral	\$	-	700	-	400	-	250		-		\sim	,	prompt month to reflect DAM settlement risk – volume starts	
															1	rolling off in delivery month	
													-			Forward months continue to be collateralized at Initial	
January	Pre-Auction	Dec Collateral	DAM Risk Collateral	\$	\$	350	\$	-	\$	-	\$	-				Margin adder	
	Activities	Requirements	Prompt Mth Collateral	\$	\$	-	\$	3,000	\$	-	\$	-			L	Walgin addel	
			Fwd Mth Collateral	\$	\$	-	\$	-	\$	250	\$	-		1			
			Total Collateral		\$	350	\$	3,000	\$	250	\$	-			•	Continue to post collateral in delivery month to reflect DAM	
		Jan Credit Lock	Bid Volume	MWh		-		200		100		50		$\overline{}$		settlement risk – example assumes 50% of mth rolled off	
		Collateral	Bid Price	\$/MWh	Ś	-	Ś	3.00	Ś	3.00	Ś	3.00		٦	۰ (Awarded volumes for Feb in Dec auction now become	
			Collateral Adder	\$/MWh	Ś	-	Ś	0.75	Ś	0.50	ŝ	0.50				prompt month and are collateralized at notional value plus	
			Total Collateral	Ś		-		750		50		25				prompt mth adder	
															•	Mar volumes continue to be collateralized by Initial Margin	
			Total Collateral	\$	\$	350	\$	3,750	\$	300	\$	25		\sim			
	Auction		Clearing Price	\$/MWh			\$	2.75	\$	2.75	\$	2.75		\mathbf{N}	•	Incremental capacity released for Jan auction - pre-auction	
																bids/offers are collateralized in the same way as in Dec	
	Post Auction	Dec Collateral	Notional Collateral	\$			\$	2,960	\$	-	\$	-				auction	
	Collateral	Requirements	Fwd Collateral	\$					\$	250	\$	-		-			
			MtM Exposure	Ş			ş	-	Ş	125	ş	-		ſ			
			Total	Ş			Ş	2,960	Ş	375	Ş	-			•	Prompt mth (Feb) now collateralized at awarded price plus	
		Jan - Awarded	Awarded Volume	MWh				200		100		50				adder to reflect DAM market settlement risk	
		CRR Collateral	Awarded Price	\$/MWh			\$	2.75	\$	2.75	\$	2.75		J	•	New clearing price for Mar means that Mar volumes	
			Collateral Adder	\$/MWh			\$	0.70	\$	0.50	\$	0.50				awarded in Dec are now \$0.50/MWh out of the money.	
			Total	\$				690		325		163		\square		Therefore additional collateral is needed for this exposure	
			Total Collateral	\$				3,650		700		163	1	- L -			
	Settlement		Dec Activity Invoice	\$			\$	2,400	\$	-	\$	-	1			Settlement of Feb awarded volumes in both the Dec. and	
			Jan Activity Invoice	\$			\$	550	\$	-	\$	-				lan auctions	
			Total	\$			\$	2,950	\$	-	\$	-	<	<u> </u>			
	Intro Austion C	ollatoral	Awardod Volume					1.000		000		550	1	_			
	mua Auction C	unateral	Collatoral Addar	¢/MMA			ċ	1,000	ć	900	ċ	350	I			In period between auctions continue to post collateral in	
			Total Collatoral	\$/ IVI VVII			ç	700	ç	150	ç	275	<	<		prompt month to reflect DAM settlement risk – volume starts	
			Total Conateral	4			4	700	4	450	4	215	1	٦		rolling off in delivery month	
\$ 0.70	Weighted DAM	Risk Adder	7													Forward months continue to be collateralized at Initial	
\$ 0.75	Pre-Auction Pr	ompt Mth Adder	1													Margin adder	

\$ 0.50 Fwd Mth Adder

Example: Event of Default

Event

Dec 111 CDD Austion	Awarded Jul 12 CPB Volume	MANA	1 000		
Dec 11 CRR Auction	Awarded Jul 12 CRR volume		1,000		
	Awarded Jul '12 CRR Price	Ş/MWh	Ş 3.00		 Initial Margin represents both price and state
	Fwd Mth Initial Margin Adder	\$/MWh	\$ 0.50		change risk between auction periods
	July '12 CRR Collateral Requirement	\$	\$ 500		
	Expected CRR Revenue to Load	\$	\$ 3,000	\triangleleft	 Represents expected revenue to load from auction for the 1,000 MWh awarded
Jan '12 CRR Auction	Awarded Jul '12 CRR Volume	MWh	1,000		
	Awarded Jul '12 CRR Price	\$/MWh	\$ 3.00		
	New Auction Clearing Price for Jul '12	\$/MWh	\$ 2.75		
	Jul '12 Mark to Market Exposure	\$	\$ (250)	\mathbb{N}	New auction clearing price of \$2.75/MWh means previously awarded CRR is out of the
	Revised July '12 CRR Collateral Requirement	\$	\$ 750		money, therefore has to post an additional \$250 of collateral
	Expected CRR Revenue to Load	\$	\$ 3,000		
					 If market participant defaults at this stage,
Mkt Participant Defaults	Collateral Previously Collected	\$	\$ 500		ERCOT would have \$500 of collateral with \$250 still owed
	Collateral Exposure	\$	\$ 250		
Jan '12 CRR Auction	Volume Available for re-auction	MWh	1,000	~	 Original volumes now available for auction again
	New Auction Clearing Price for Jul '12	\$/MWh	\$ 2.60		ugum
	Expected CRR Revenue to Load	s	\$ 3,000		New auction price means that load still needs
	Revenue collected from re-auctioned volume	Ś	\$ 2,600		\$400 to be made whole
	Collateral collected from defaulting party	ć	\$ 500		Original \$500 initial margin collected makes up difference such that no uplift cost to market
	Unlift cost to ERCOT participants	Ŷ	\$.00 \$.		
	opine cost to encor participants		Ŷ	•	

To the extent that initial margin adder does not cover price movement between auction, potential uplift risk will exist

Potential Methodology for Calculating Initial Margin

	Description	Considerations				
Parallel Shift	Uses a Z-score, current monthly price, and historical volatility terms structure to estimate potential worst case price movement across all tenors	 Relatively simple to implement Assumes normal distribution of prices Not suitable for options Assumes independence among risk factors 				
Delta-Normal	 Uses a correlation matrix of risk factors to arrive at a worst case price scenario 	 Relatively simple to implement Assumes normal distribution of prices Not suitable for options Allows for relationships between risk factors 				
Historical Simulations	 Utilizes historical price returns to calculate the risk of a current portfolio 	 Relatively simple to implement Takes into account non normal distributions as well as options Allows for relationships between risk factors Historical returns not necessarily indicative of future market conditions 				
Monte Carlo Based Simulations	 Parameterizes the risk factors of a portfolio in order to simulate price paths in an attempt to estimate the potential worst case price movement of a portfolio 	 More statistically robust methodology Takes into account non normal distributions as well as options Allows for relationships between risk factors More complex to implement 				

While a robust methodology for calculating initial margin is preferred, an interim solution that allows for estimated initial margins may be used in the short-term

Potential Sources for Price Volatility In Order to Calculate Initial Margin (excludes State Change component)

Considerations

Generated **Prices**

CRR A Pri	uction ice	 Preferred solution but would take a minimum of 3 years before enough data exists in order to calculate a robust initial margin 	
Forward	d Prices	 Forward market prices should reflect latest view of forward CRR value Forward market only typically trades for Hub and Zone Zone market is still relatively illiquid Publicly available information via broker quotes 	Interim solution before sufficient price data exists is likely to involve a combination of various
DAMI	Prices	 Provides multiple price observations Day ahead prices not necessarily representative of forward market 	price inputs
Mo	del	 Use model based scenarios to determine price volatility 	

APPENDIX

Credit Calculations – Pre Auction Collateralisation

 $CE_{c,a} = [CEOBLBID_{o,a} + CEOPTBID_{o,a} + CEOBLOFFER_{o,a} + CEOPTOFFER_{o,a}]$ Where:

$$\begin{split} \mathsf{CEOBLBID}_{o} &= & \begin{bmatrix} \mathsf{Max}[\ 0 \ , \ \mathsf{Min}[\ \mathsf{P}_{\mathsf{bid}}, \ \mathsf{MCEP}_{(j,k),c,t,d,z} \] \end{bmatrix} + \mathsf{A}_{(j,k),t,d} \end{bmatrix} * & \mathsf{QOBLB}_{(j,k),o,t,d} \end{bmatrix} + \\ & \mathsf{FA}_{(j,k),t,d} & * & \mathsf{QFDOBLB}_{(j,k),o,t,d} \end{split}$$

$$\begin{split} \mathsf{CEOPTBID}_{o} &= [\mathsf{Max}[\ 0\ ,\ \mathsf{Min}[\ \mathsf{P}_{\mathsf{bid}},,\ \mathsf{MCEP}_{(j,k),c,t,d,z}\]] & \mathsf{QOPTB}_{(j,k),o,t,d}] + \\ & \mathsf{FA}_{(j,k),t,d} & \mathsf{QFDOPTB}_{(j,k),o,t,d} \end{split}$$

$$\begin{split} \mathsf{CEOBLOFFER}_{o} &= [-1 * \mathsf{Min}[\ 0 \ , \ \mathsf{Min}[\ \mathsf{P}_{\mathsf{offer}}, \ \mathsf{MCEP}_{(j,k),c,t,d,z} \]] * \mathsf{QOBLO}_{(j,k),o,t}] + \\ & [-1 * \mathsf{FA}_{(j,k),t,d} * \mathsf{QFDOBLO}_{(j,k),o,t,d} \] \end{split}$$

$$\begin{split} \mathsf{CEOPTOFFER}_{o} &= [-1 * \mathsf{Min}[\ 0 \ , \mathsf{Min}[\ \mathsf{P}_{\mathsf{offer}}, \ \mathsf{MCEP}_{(j,k),c,t,d,z} \]] * \mathsf{QOPTO}_{(j,k),o,t}] + \\ & [-1 * \mathsf{FA}_{(j,k),t,d} * \mathsf{QFDOPTO}_{(j,k),o,t,d} \] \end{split}$$

•Prompt Month Obligation Bid (P + A)* Q + Forward Obligation Bid A * Q, where P is the maximum of the bid price and a price that derives the max exposure for a given bid curve, similar to the logic being used in DAM

•Prompt Month Option Bid P * Q + Forward Option Bid A * Q, where P is the maximum of the bid price and a price that derives the max exposure for a given bid curve

•Prompt Month Obligation Offer P * Q + Forward Obligation Offer A * Q, where P is the absolute of offer price and a price that derives the max exposure for a given offer curve

•Prompt Month Option Offer P * Q + Forward Option Offer A * Q, where P is the absolute of offer price and a price that derives the max exposure for a given offer curve

•Please note that A and FA are path specific adders that will mitigate the risk of price movement between auctions

Credit Calculations – Future Credit Exposure

FCE $_{o}$ = FCEOBL $_{o}$ + FCEOPT $_{o}$ + FCRFGR $_{o}$ - Max[0, FDAR $_{o}$] Where Prompt Month FCE = FMMOBL $_{o}$ = Max[ACPEOBL $_{h, (j, k), o, p}$, -FMMOBL $_{o, p, h, (j, k)}$] + Where Forward Months FCE = INTMOBL $_{o}$ = (INTM $_{h, (j, k)}$ * OBLMW $_{o, h, (j, k)}$) + FMMOBL $_{o}$ = [(ACP $_{h, (j, k)}$ - OBLPR $_{(j, k), a}$)* OBLMW $_{o, h, (j, k)}$]

•This formula calculates FCE for prompt month as per current protocols to capture the risk of the CRR – DAM price movement; forward months are collateralized by the sum of a path specific initial margin multiplied by awarded quantity and the difference between original awarded CRR ACP and most recent market clearing price, multiplied by awarded quantity

•The latter part of equation captures the MTM movement by specific source sink pairing of a CRR