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Overview

 The Solar Power Forecasting Challenge

« Current Forecasting Tools

— Weeks and Months Ahead
— Days Ahead

— Minutes and Hours Ahead
— Types of Forecast Products

e Forecast Performance Benchmarks

— Performance metrics

— Days Ahead

— Hours Ahead

— Solar vs. Wind Power Forecasts

 The Road to Improved Forecasts
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Solar Power Forecast Challenge
Factors that Affect Solar Power

 Global Solar Irradiance (~90%),
« Temperature (~10%),

* Wind (<1%)

. Type of Plant

Determines exact impact of all three factors

— Categories of plants: (1) PV, (2)
Concentrating PV, (3) Solar thermal (also
concentrating)

— PV is sensitive to Global Irradiance

— Concentrating types (thermal and PV) are
sensitive to Direct Normal Irradiance

— Also significant sensitivity variations within
basic categories
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Solar Power Forecast Challenge
Environmental Factors that Affect Solar Irradiance

Sun Angle

- most significant but completely
predictable

 Cloud Cover
- cause of the most variance (~90%)

— largest meteorological challenge to
forecasts

« Haze, Dust and Smoke Particles
- up to 10 % of variance

« Humidity levels (Water Vapor)
- about 1 % of variability

- Components of Irradiance (diffuse,
direct) are affected differently by
these factors
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The Challenge — Making the Best Forecast
for Various Time Scales

Minutes Ahead

* Cumulus clouds, small-scale cloud structures, fog

« Rapid and erratic evolution; very short lifetimes

» Mostly not observed by current sensor network

» Tools: persistence, skycams, local irradiance trends
« Very difficult to beat a persistence forecast

* Need: Data & tools to handle development & dissipation

Hours Ahead

* Frontal bands, mesoscale bands, fog, thunderstorms
» Rapidly changing, short lifetimes

* Current sensors detect existence but not structure

* Tools: satellite-based cloud advection and NWP
* Need: Better forecasts of development & dissipation

"y

Days Ahead

+ “Lows and Highs”, frontal systems

» Slowly evolving, long lifetimes

« Well observed with current sensor network
» Tools: NWP with statistical adjustments
« >~ 10 days- climatology and climate trends

* Need: better NWP performance & improved MOS
3855 AWS Truepowel
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Solar Irradiance
Forecasting Tools
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Forecasting Technigues — Weeks & Months Ahead
Climatology and Global Circulation Indices

Solar Resource
&% United States

« Climatology

— Long term characteristics of
solar resources by time of day
and day of year

— Often the best forecast for look-
ahead periods >10 days

o Statistical links to Global
31 MULTIVARIATE ENSO INDEX Circulation Indices
El Nino (ENSO)

Cloudiness and precipitation
have significant correlations
with ENSO in some areas

Madden-Julian Oscillation
North Atlantic Oscillation (NAO)
Pacific Decadal Oscillation (PDO)

Standardized Departure

NOAA/ESRL/Physical Science Division - Universily of Colorade al Boulder /CIRES/CDC
1950 1956 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010
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Forecasting Techniques - Days Ahead
Physics-based Numerical Weather

Prediction (NWP) Models

 Differential equationsdor basic physical |
principles (conservation laws) are solved -
on a 3-D grid

* Simulates the evolution of the
atmosphere over a 3-D volume

- explicitly predicts a time series of most
atmospheric variables including solar irradiance
at all grid points in the model domain
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Forecasting Techniques — Days Ahead

Model Output Statistics (MOS)

Predictors Predictand
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« Statistical adjustment to NWP model predictions
— Account for processes below the resolution of the NWP model
— Correct for systematic errors caused by the model physics or initialization
« Requires a training sample of concurrent NWP data and
measured values of the forecast variable

 Many statistical approaches can be used
— Statistical models: linear regression, artificial neural networks etc.
— Training sample strategies: fixed, rolling, regime—based etc.

AWS Truep
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Forecasting Techniques - Days Ahead

NWP Ensembles

* |ssue: Uncertainty present in any
forecast method due to
— Input data

— Model type m
— Model configuration -
Lt N

« General Approach: Vary the sources of

uncertainty within their range of

uncertainty and generate a set * Typical Approach 1.
(ensemble) of forecasts #EUGD DL CEIEY, (1T
produce set of
* Benefits forecasts
— Ensemble composite typically performs « Typical Approach 2:
better than any individual forecast over a Use multiple models or
large sample model configurations
— Ensemble spread provides case-specific to produce set of
measure of forecast uncertainty forecasts
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Forecasting Techniques - Minutes & Hours Ahead
Persistence and Time Series Methods

« Persistence: Current
conditions = forecast

« Usually adjusted for
daily solar cycle

 Useful benchmark for
other types of
forecasts

* Time series methods
(e.g. ARIMA) can
extend persistence
concept by using
recent and/or
conditional
climatological trends

©2010 AWS Truepower, LLC
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Forecasting Techniques - Hours Ahead

Cloud Advection Model

* Obtain initial position of
clouds from satellite data

* Obtain wind field from AT
anothers_ource (e.g.w!nd P
observations from profilers
or Doppler radars or NWP + = =
model) =P | P [ | | =

» Advect clouds to future

= | =P | = e | =P

positions using wind field

54 57 60 63 66 69 72 75 78 81 84 87 90 83 9¢

AWS Truepower™

©2010 AWS Truepower, LLC Where science delnvers performance.



Forecasting Techniques - Hours Ahead

Cloud ec or Moionrom Satellite
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Forecasting Techniques — Minutes Ahead

SkyCam-Based Methods

* Cloud motion extrapolation techniques can be applied on
minutes ahead time scale using skycam data in place of
satellite image data

- Need source of skycam data
- Tracks and extrapolates motion of cloud elements
- Few applications thus far; great potential for 0-1 hour forecasts

.,,. AWS Truepower™
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Forecasting Techniques - Hours Ahead

Rapid Update NWP

 Run NWP frequently and at
high resolution

<5km
2 hr or less cycle

* Improve cloud initialization

Estimate Cloud top height from
infrared satellite imagery.

Estimate Cloud coverage from
visible satellite imagery.

Estimate cloud base height from
surface observations.

Moisten or dry atmosphere based on
knowledge of cloud layers.

Locate regions of deep moist air with
radar and moisten appropriately

* Improve representation of
clouds in the NWP models

©2010 AWS Truepower, LLC
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Integrated Solar Forecast System

« Combination of several
methods and a variety
of Input data types

* |deally: the system
seamlessly switches
from one technigue to
another as the look-
ahead time increases

* Plant output model must
consider the type of
solar facility

— PV, CSP etc

— Could be a statistical or
physics-based model

©2010 AWS Truepower, LLC
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Types of Forecasts:

Deterministic vs. Probabilistic

Deterministic
- Typically optimized to minimize a performance metric (e.g. RMSE)
- Deterministic forecasts are simpler to interpret and use

Probabilistic
-  More information than deterministic forecasts
- The information difference is inversely related to forecast skill

« At high skill, the difference is small
« At lower skill levels the information difference is large

- Studies have demonstrated that a trained user makes better
application decisions when using a probabilistic forecast

Hybrid
— Deterministic time series (but with what performance criterion?)
— Probabillistic confidence intervals

All of these could be in atime-series or event mode

.o,.::.' AWS Truepower™
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S olar Forecast Performance:
Next Day
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Evaluation Metrics

e Deterministic
- Most widely used: Bias, MAE & RMSE
-  Forecast to observed correlation

- Error distributions
= Percentage of time that magnitude of error < threshold

- Skill Score

= Percentage improvement of a metric relative to a reference forecast
= Persistence and climatology are typical reference forecasts

- Many other possibilities
- ldeally, metric should measure a user’s sensitivity to forecast error

* Probabilistic

— Three key attributes
« Reliability (most commonly evaluated)
« Sharpness
« Resolution

— Need a measure of all three factors
= Brier score, Ranked Probability Score (RPSS), etc.

AWS Truepower™

©2010 AWS Truepower, LLC Where science delivers performanc@



IEA Day-Ahead Forecast

Performance Benchmark

Background: Investigation performed in conjunction with the

International Energy Agency (IEA) Task 36 NWP Project directed
by Richard Perez of the State University of NY at Albany.

— Objective: compare performance of solar irradiance forecasts from
different NWP modeling systems

— Several participants: ECMWF, Environment Canada, SARC, AWST, etc.

« AWST’s Sub-project: Examine performance of solar

Irradiance forecasts from several mesoscale models and MOS
algorithms

- Evaluation Period: May 2009 to April 2010

Evaluation Approach: Examine performance statistics (MAE
etc.) and analyze specific cases to understand error patterns

.
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Performance

Forecast Performance — Days Ahead

AWST’s IEA Project Day-Ahead Experiments

* Three NWP Model Forecasts

MASS: commercial model (MESO)

WRF: open source community model
ARPS: developed at University of Oklahoma
Nested grid with 5 km resolution inner grid

NOAA's Global Forecast System (GFS) for
initial and boundary conditions

Forecasts initialized at 0000 UTC each day

« MOS Adjustment for Each Model

Screening multiple linear regression
Rolling 60-day unstratified sample

Predictors are selected output variables
interpolated to the forecast location

Applied separately to each model’s output

©2010 AWS Truepower, LLC
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Day Ahead Forecast Example Clear Day
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Day-Ahead Forecast Example: Partly Cloudy Afternoon
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Performance

12-Month Bias, MAE and RMSE for
Desert Rock Day-ahead Forecasts

12-Month Bias of GHI Forecasts for Desert Rock
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12-Month Bias, MAE and RMSE for

Penn State Day-ahead Forecasts

12-Month Bias of GHI Forecasts for Penn State 12-Month MAE of GHI Forecasts for Penn State
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Performance

12-Month Bias, MAE and RMSE for
Goodwin Creek (Raw and MOS)

Wim2

12-Month MAE of GHI Forecasts for Goodwin Creek
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12-Month Day-Ahead GHI Forecast
Performance Statistics

RAW NWP MOS-ADJUSTED NWP
MASS ARPS MASS WRE ARPS
DRA | 1761 20.71 -0.68 0.68 -0.30
Bias | PSA | 42.77 42.62 0.28 0.62 0.24
GWN | 3966 32.35 0.49 0.24 -1.19
DRA | 113.69 123.10 68.88 68.52
MAE | PSA | 145.04 147.69 90.44 96.01
GWN | 15505 151.00 99.53 106.35
DRA | 158.36 168.04 107.83 107.54
RMSE | PSA | 196.98 203.60 126.64 136.32
GWN | 208.63 199.94 142.49 151.90
Best

Performance & aws True
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Estimated Solar Power Forecast Performance

* Output model (from AWST data)
e Output model applied to measured and forecasted GHI values
« MAE for all hours of the day with non-zero measured average GHI (daylight)

Estimated Day-ahead Solar Power Production Forecast MAE
IEA Project: Monthly and Annual based on MASS-MOS Method

BGWC BDRA OpsU |

18

16
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12 ]

MAE (% of Plant Capacity)

May Jun Jul Aug Sep Oct MNov Dec Jan Feb Mar Apr Avg
Month
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- Solar Forecast Performance:
Hours Ahead
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Short-term GHI Forecast Benchmark (U Albany)

« Period: August 23, 2008 to January 31, 2009 (drier season)

 Composite RMSE for 6 sites

— Fort Peck, MT, Boulder, CO, Sioux Falls, SD, Bondyville, IL, Goodwin Creek, MS, State
College, PA

5 forecast methods

— NDFD (NWP-based), persistence satellite, persistence measured, cloud vector motion,
cloud vector motion smooth
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cloud motion smoothed
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—orecast Performance:
Solar vs. Wind
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Performance

Solar vs. Wind Forecasting

 Location Attributes

— Utility-scale solar plants are sited in
sunny areas
» Less variable than an average site
— Wind plants are sited in windy areas
« More variable than an average site

 Power System Attributes

— Solar generation has a quasi-linear
relationship to irradiance

— Wind generation is a function of wind
speed cubed between start-up speed
and rated capacity

* Forecast Input Data

— Dominant factor is cloud coverage and
density which can be spatially
observed via satellite and sky-cams

— Wind speeds patterns can’t be as
easily observed

©2010 AWS Truepower, LLC
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Solar vs. Wind Forecasting Performance:

An Arbitrary Real Word Comparative Example
* Wind: ~ 80 MW facility

N the ERCOT co ntrOI Forecast MAE by Hour of the Day

area =="Wind - January" =#%="Solar -January" =#=Soclar-March/April

e Solar: ~ 5 MW facility in
central California

« Monthly MAE (% of
capacity)
— Wind: 11.8% (all hours)

— Solar:

» For a relatively cloudy
time of year

° 31% (a” hourS) Hour of the Day (local time)

e
£ O oa

=
[

MAE (% of Capadity)
=t
o

[ T LS T < = A =

* 6.9% (daylight hours)
 10.7% (10 AM — 3 PM)

AWS Truep
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Solar Forecast Performance:

Impact of Aggregation

* Impact of aggregation on solar Day-Ahead Forecast MAE of
forecast performance has not Swtemﬂlwii Wd:ﬂ:rudmﬂ
been thoroughly analyzed 1%
— Penetration of solar power s ]
production is low in most areas Ei:: E
— Limited data available % L .
 Impact of aggregation is 5 o |
substantial for wind g~ : . :
* What will be the impact of ox |
aggregated wind and solar on e e e
forecasts of combined
generation? Impact of aggregation on day-ahead wind forecast MAE

AWS Truepower™
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T The Road to Increased
| Forecast Value
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Future Prospects:

How can forecast value be increased?

- Improve forecast performance
- Days ahead

« Gradual improvement in global/regional NWP model performance due to additional
global data, data assimilation system improvements and refinements to NWP models

« Further near-term improvement due to more sophisticated correction of NWP’s
systematic errors and statistical weighting of NWP ensemble members — probably
diminishing returns soon

- Hours and minutes ahead

« Use of customized rapid update NWP
Improve cloud initialization and cloud submodels

- Refinement of satellite-based cloud element tracking methods
Techniques to account for cloud development and dissipation
Higher resolution satellite-image data

« Application of skycam-based cloud tracking for 0-1 hr ahead forecasts

« More sophisticated time series forecasting techniques with off-site data
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Future Prospects:

How can forecast value be increased?

 Develop Distributed Solar Generation Forecast Tools

Inventory of solar generation sites
« System attributes

 Operating condition
Data from the sites?
NWP and satellite-based methods can be easily adapted for this application
Statistical schemes need site data (power output or irradiance)

 Make more effective use of forecast information

- Use of probabilistic forecasts

» Substantial amount of information is discarded when ONLY deterministic
information is provided

» Research studies in other (non-energy) applications have indicated that trained
users make better application decisions when using a probabilistic forecast

- Better forecast integration with decision-maker’s procedures

©2010 AWS Truepower, LLC
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Summary

« State-of-the-art forecasts are generated with a combination of
statistical, pattern-recognition and physics-based forecast tools
and a variety of input data types

« Relative performance of the forecasting tools varies with look-
ahead time — best current tool for each look-ahead range:
— Weeks / months ahead: statistical links to global indices (e.g. EI Nino)
— 6 hours — 10 days ahead: Statically adjusted ensemble of NWP
— 1 - 6 hours ahead: Satellite-based cloud motion extrapolation
— 0 -1 hour ahead: Sky-cam based cloud motion extrapolation

« “Typical” day-ahead forecast errors for an individual facility:
— GHI: 75 watts/m? to 175 watts/m?
— PV plant power output: 8-13% of capacity during peak generation hours

— Overall performance is better for sunnier sites

« Potential for improvement in the near-term is highest for
minutes and hours ahead forecasts

AWS Truep
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