ETWG Solar Workshop Austin, TX April 25, 20110

Current Status and Challenges of Solar Power Production Forecasting

JOHN ZACK AWS TRUEPOWER, LLC 185 Jordan Rd Troy, NY 12180

463 NEW KARNER ROAD | ALBANY, NY 12205 awstruepower.com | info@awstruepower.com

Overview

The Solar Power Forecasting Challenge

Current Forecasting Tools

- Weeks and Months Ahead
- Days Ahead
- Minutes and Hours Ahead
- Types of Forecast Products

Forecast Performance Benchmarks

- Performance metrics
- Days Ahead
- Hours Ahead
- Solar vs. Wind Power Forecasts
- The Road to Improved Forecasts

Solar Power Forecast Challenge Factors that Affect Solar Power

- Global Solar Irradiance (~90%),
- Temperature (~10%),
- Wind (<1%)
- Type of Plant
 - Determines exact impact of all three factors
 - Categories of plants: (1) PV, (2) Concentrating PV, (3) Solar thermal (also concentrating)
 - PV is sensitive to Global Irradiance
 - Concentrating types (thermal and PV) are sensitive to Direct Normal Irradiance
 - Also significant sensitivity variations within basic categories

Solar Power Forecast Challenge Environmental Factors that Affect Solar Irradiance

- Sun Angle
 - most significant but completely predictable

Cloud Cover

- cause of the most variance (~90%)
- largest meteorological challenge to forecasts
- Haze, Dust and Smoke Particles
 - up to 10 % of variance
- Humidity levels (Water Vapor)
 - about 1 % of variability
- Components of Irradiance (diffuse, direct) are affected differently by these factors

The Challenge – Making the Best Forecast for Various Time Scales

Minutes Ahead

- Cumulus clouds, small-scale cloud structures, fog
- Rapid and erratic evolution; very short lifetimes
- Mostly not observed by current sensor network
- Tools: persistence, skycams, local irradiance trends
- Very difficult to beat a persistence forecast
- Need: Data & tools to handle development & dissipation

Hours Ahead

- Frontal bands, mesoscale bands, fog, thunderstorms
- Rapidly changing, short lifetimes

Challenges

- Current sensors detect existence but not structure
- Tools: satellite-based cloud advection and NWP
- Need: Better forecasts of development & dissipation

Days Ahead

- "Lows and Highs", frontal systems
- Slowly evolving, long lifetimes
- Well observed with current sensor network
- Tools: NWP with statistical adjustments
- > ~ 10 days- climatology and climate trends
- Need: better NWP performance & improved MOS

Solar Irradiance Forecasting Tools

©2010 AWS Truepower, LLC

Forecasting Techniques – Weeks & Months Ahead Climatology and Global Circulation Indices

Climatology

Methods

- Long term characteristics of solar resources by time of day and day of year
- Often the best forecast for lookahead periods >10 days

- Statistical links to Global Circulation Indices
 - El Nino (ENSO)
 - Cloudiness and precipitation have significant correlations with ENSO in some areas
 - Madden-Julian Oscillation
 - North Atlantic Oscillation (NAO)
 - Pacific Decadal Oscillation (PDO)

Forecasting Techniques - Days Ahead **Physics-based Numerical Weather Prediction (NWP) Models**

- Differential equations for basic physical principles (conservation laws) are solved on a 3-D grid
- Simulates the evolution of the atmosphere over a 3-D volume
 - explicitly predicts a time series of most atmospheric variables including solar irradiance at all grid points in the model domain

$$\frac{\partial u}{\partial t} = m \left(-u \frac{\partial u}{\partial x} - v \frac{\partial v}{\partial y} - \frac{\partial \Phi}{\partial x} - \sigma_p \alpha \frac{\partial p^*}{\partial x} \right) - \dot{\sigma} \frac{\partial u}{\partial \sigma_p} + fv$$

- Initial values for all variables must be specified for all grid cells.
- Boundary values must be specified for all boundary cells (usually from another model with a larger domain)

©2010 AWS Truepower, LLC

Forecasting Techniques – Days Ahead Model Output Statistics (MOS)

- Statistical adjustment to NWP model predictions
 - Account for processes below the resolution of the NWP model
 - Correct for systematic errors caused by the model physics or initialization
- Requires a training sample of concurrent NWP data and measured values of the forecast variable
- Many statistical approaches can be used
 - Statistical models: linear regression, artificial neural networks etc.
 - Training sample strategies: fixed, rolling, regime-based etc.

Methods

Methods

Forecasting Techniques - Days Ahead **NWP Ensembles**

- Issue: Uncertainty present in any forecast method due to
 - Input data
 - Model type
 - Model configuration
- General Approach: Vary the sources of uncertainty within their range of uncertainty and generate a set (ensemble) of forecasts
- Benefits
 - Ensemble composite typically performs better than any individual forecast over a large sample
 - Ensemble spread provides case-specific measure of forecast uncertainty

- Typical Approach 1: Perturb input data, to produce set of forecasts
- Typical Approach 2: Use multiple models or model configurations to produce set of forecasts

Forecasting Techniques - Minutes & Hours Ahead Persistence and Time Series Methods

• Persistence: Current conditions = forecast

Methods

- Usually adjusted for daily solar cycle
- Useful benchmark for other types of forecasts
- Time series methods (e.g. ARIMA) can extend persistence concept by using recent and/or conditional climatological trends

Persistence Irradiance Forecast adjusted for time of day sun angle for 8:00 versus 8:05 AM

Forecasting Techniques - Hours Ahead Cloud Advection Model

- Obtain initial position of clouds from satellite data
- Obtain wind field from another source (e.g. wind observations from profilers or Doppler radars or NWP model)
- Advect clouds to future positions using wind field

Forecasting Techniques - Hours Ahead Cloud Vector Motion from Satellite

Forecasting Techniques – Minutes Ahead SkyCam-Based Methods

- Cloud motion extrapolation techniques can be applied on minutes ahead time scale using skycam data in place of satellite image data
 - Need source of skycam data
 - Tracks and extrapolates motion of cloud elements
 - Few applications thus far; great potential for 0-1 hour forecasts

Forecasting Techniques - Hours Ahead Rapid Update NWP

- Run NWP frequently and at high resolution
 - < 5 km
 - 2 hr or less cycle

Improve cloud initialization

- Estimate Cloud top height from infrared satellite imagery.
- Estimate Cloud coverage from visible satellite imagery.
- Estimate cloud base height from surface observations.
- Moisten or dry atmosphere based on knowledge of cloud layers.
- Locate regions of deep moist air with radar and moisten appropriately
- Improve representation of clouds in the NWP models

Integrated Solar Forecast System

- Combination of several methods and a variety of input data types
- Ideally: the system seamlessly switches from one technique to another as the lookahead time increases
- Plant output model must consider the type of solar facility
 - PV, CSP etc
 - Could be a statistical or physics-based model

Types of Forecasts: Deterministic vs. Probabilistic

Deterministic

- Typically optimized to minimize a performance metric (e.g. RMSE)
- Deterministic forecasts are simpler to interpret and use

Probabilistic

- More information than deterministic forecasts
- The information difference is inversely related to forecast skill
 - At high skill, the difference is small
 - At lower skill levels the information difference is large
- Studies have demonstrated that a trained user makes better application decisions when using a probabilistic forecast

Hybrid

- Deterministic time series (but with what performance criterion?)
- Probabilistic confidence intervals
- All of these could be in a time-series or event mode

Solar Forecast Performance: Next Day

Evaluation Metrics

Deterministic

- Most widely used: Bias, MAE & RMSE
- Forecast to observed correlation
- Error distributions
 - Percentage of time that magnitude of error < threshold
- Skill Score
 - Percentage improvement of a metric relative to a reference forecast
 - Persistence and climatology are typical reference forecasts
- Many other possibilities
- Ideally, metric should measure a user's sensitivity to forecast error

Probabilistic

- Three key attributes
 - Reliability (most commonly evaluated)
 - Sharpness
 - Resolution
- Need a measure of all three factors
 - Brier score, Ranked Probability Score (RPSS), etc.

IEA Day-Ahead Forecast Performance Benchmark

- Background: Investigation performed in conjunction with the International Energy Agency (IEA) Task 36 NWP Project directed by Richard Perez of the State University of NY at Albany.
 - Objective: compare performance of solar irradiance forecasts from different NWP modeling systems
 - Several participants: ECMWF, Environment Canada, SARC, AWST, etc.
- AWST's Sub-project: Examine performance of solar irradiance forecasts from several mesoscale models and MOS algorithms
- Evaluation Period: May 2009 to April 2010
- Evaluation Approach: Examine performance statistics (MAE etc.) and analyze specific cases to understand error patterns

IEA Evaluation Locations: SURFRAD Sites

Forecast Performance – Days Ahead AWST's IEA Project Day-Ahead Experiments

- Three NWP Model Forecasts
 - MASS: commercial model (MESO)
 - WRF: open source community model
 - ARPS: developed at University of Oklahoma
 - Nested grid with 5 km resolution inner grid
 - NOAA's Global Forecast System (GFS) for initial and boundary conditions
 - Forecasts initialized at 0000 UTC each day
- MOS Adjustment for Each Model
 - Screening multiple linear regression
 - Rolling 60-day unstratified sample
 - Predictors are selected output variables interpolated to the forecast location
 - Applied separately to each model's output

DOWNWARD SHORT WAVE FLUX AT GROUND SURFACE (W m-2)

100 200 300 400 500 600 700 800 900 1000

NWP forecast of solar irradiance

Day Ahead Forecast Example: Clear Day

Day-Ahead Forecast Example: Cloudy Morning

April 30 2010 11:57 AM EDT (1557 UTC)

Day-Ahead Forecast Example: Partly Cloudy Afternoon

April 30 2010 4:59 PM EDT (2059 UTC)

12-Month Bias, MAE and RMSE for Desert Rock Day-ahead Forecasts

©2010 AWS Truepower, LLC

12-Month Bias, MAE and RMSE for Penn State Day-ahead Forecasts

12-Month Bias, MAE and RMSE for Goodwin Creek (Raw and MOS)

©2010 AWS Truepower, LLC

12-Month Day-Ahead GHI Forecast Performance Statistics

RAW NWP

MOS-ADJUSTED NWP

		MASS	WRF	ARPS		MASS	WRF	ARPS
Bias	DRA	17.61	0.15	20.71		-0.68	0.68	-0.30
	PSA	42.77	20.54	42.62		0.28	0.62	0.24
	GWN	39.66	16.68	32.35		0.49	0.24	-1.19
MAE	DRA	113.69	118.19	123.10		68.88	66.57	68.52
	PSA	145.04	134.12	147.69		90.44	96.63	96.01
	GWN	155.05	138.33	151.00		99.53	99.80	106.35
RMSE	DRA	158.36	151.04	168.04		107.83	108.30	107.54
	PSA	196.98	182.82	203.60		126.64	136.31	136.32
	GWN	208.63	138.33	199.94		142.49	145.55	151.90
						\bigcirc		
						Best		
©2010 AWS Truepower, LLC							ce 🚺 AV	

Estimated Solar Power Forecast Performance

- Output model (from AWST data)
- Output model applied to measured and forecasted GHI values
- MAE for all hours of the day with non-zero measured average GHI (daylight)

Solar Forecast Performance: Hours Ahead

©2010 AWS Truepower, LLC

Short-term GHI Forecast Benchmark (U Albany)

- Period: August 23, 2008 to January 31, 2009 (drier season)
- Composite RMSE for 6 sites
 - Fort Peck, MT, Boulder, CO, Sioux Falls, SD, Bondville, IL, Goodwin Creek, MS, State College, PA
- 5 forecast methods
 - NDFD (NWP-based), persistence satellite, persistence measured, cloud vector motion, cloud vector motion smooth

Forecast Performance: Solar vs. Wind

Solar vs. Wind Forecasting

Location Attributes

- Utility-scale solar plants are sited in sunny areas
 - Less variable than an average site
- Wind plants are sited in windy areas
 - More variable than an average site

Power System Attributes

- Solar generation has a quasi-linear relationship to irradiance
- Wind generation is a function of wind speed cubed between start-up speed and rated capacity

Forecast Input Data

- Dominant factor is cloud coverage and density which can be spatially observed via satellite and sky-cams
- Wind speeds patterns can't be as easily observed

Solar vs. Wind Forecasting Performance: An Arbitrary Real Word Comparative Example

- Wind: ~ 80 MW facility in the ERCOT control area
- Solar: ~ 5 MW facility in central California
- Monthly MAE (% of capacity)
 - Wind: 11.8% (all hours)
 - Solar:
 - For a relatively cloudy time of year
 - 3.1% (all hours)
 - 6.9% (daylight hours)
 - 10.7% (10 AM 3 PM)

Solar Forecast Performance: Impact of Aggregation

- Impact of aggregation on solar forecast performance has not been thoroughly analyzed
 - Penetration of solar power production is low in most areas
 - Limited data available
- Impact of aggregation is substantial for wind
- What will be the impact of aggregated wind and solar on forecasts of combined generation?

Impact of aggregation on day-ahead wind forecast MAE

The Road to Increased Forecast Value

©2010 AWS Truepower, LLC

Future Prospects: How can forecast value be increased?

Improve forecast performance

- Days ahead
 - Gradual improvement in global/regional NWP model performance due to additional global data, data assimilation system improvements and refinements to NWP models
 - Further near-term improvement due to more sophisticated correction of NWP's systematic errors and statistical weighting of NWP ensemble members – probably diminishing returns soon
- Hours and minutes ahead
 - Use of customized rapid update NWP
 - Improve cloud initialization and cloud submodels
 - Refinement of satellite-based cloud element tracking methods
 - Techniques to account for cloud development and dissipation
 - Higher resolution satellite-image data
 - Application of skycam-based cloud tracking for 0-1 hr ahead forecasts
 - More sophisticated time series forecasting techniques with off-site data

Develop Distributed Solar Generation Forecast Tools

- Inventory of solar generation sites
 - System attributes
 - Operating condition
- Data from the sites?
- NWP and satellite-based methods can be easily adapted for this application
- Statistical schemes need site data (power output or irradiance)

Make more effective use of forecast information

- Use of probabilistic forecasts
 - Substantial amount of information is discarded when ONLY deterministic information is provided
 - Research studies in other (non-energy) applications have indicated that trained users make better application decisions when using a probabilistic forecast
- Better forecast integration with decision-maker's procedures

Summary

- State-of-the-art forecasts are generated with a combination of statistical, pattern-recognition and physics-based forecast tools and a variety of input data types
- Relative performance of the forecasting tools varies with lookahead time – best current tool for each look-ahead range:
 - Weeks / months ahead: statistical links to global indices (e.g. El Nino)
 - 6 hours 10 days ahead: Statically adjusted ensemble of NWP
 - 1 6 hours ahead: Satellite-based cloud motion extrapolation
 - 0 1 hour ahead: Sky-cam based cloud motion extrapolation
- "Typical" day-ahead forecast errors for an individual facility:
 - GHI: 75 watts/m² to 175 watts/m²
 - PV plant power output: 8-13% of capacity during peak generation hours
 - Overall performance is better for sunnier sites
- Potential for improvement in the near-term is highest for minutes and hours ahead forecasts

