

Scenario Development

Doug Murray

January 2011

Scenario Development

Goal: Develop long range (20 yr) transmission plan

- Start with 5YTP which includes:
 - CREZ transmission
 - Houston Import
 - Other transmission improvements Board approved
 - Generation additions with Interconnection agreements as of February 28th

Question: What would cause a change to the transmission configuration?

- Major considerations will be:
 - Load growth
 - New green-field generation
 - New technologies with differing operational considerations (wind, solar, storage, demand response)
 - Natural Gas Prices

Business As Usual Scenario

- Business As Usual scenario (BAU) BAU Scenario is characterized by continuation of historic market trends and policies
- This scenario will assist in the development of processes and procedures to be used in later analysis
- Will include:
 - All info from 5YTP
 - Continue production tax credit
 - Inclusion of new generating technologies will also be considered based on economics
 - Additional capacity will be based on projections of future costs
 - Use market intelligence to fine tune generation expansion
 - Fuel price assumptions will be based on latest EIA forecasts
- Generation and Transmission system expansion will be developed for 2020, 2025, 2030

Fuel Price Assumptions for BAU Scenario

- EIA 2010 Annual Energy Outlook
- May be updated with 2011 Outlook

Load Forecast Assumptions for BAU Scenario

Year	Peak
2010	64,558
2011	65,719
2012	67,178
2013	68,725
2014	69,991
2015	71,063
2016	71,927
2017	73,176
2018	74,229
2019	75,200
2020	76,099
2021	77,218
2022	78,063
2023	78,982
2024	79,763
2025	81,077
2026	82,111
2027	83,159
2028	84,220
2029	85,294
2030	86,382

Business As Usual Scenario

Capacity expansion development

- This will likely be an iterative process
 - Use MarketPower output for economic expansion and retirements
 - Use levelized cost analysis to guide decision on expansion units
- Assess expansion generation types on system base, intermediate, and peaking MW needs
- Run PROMOD model to examine results with expansion plan
 - What do unit economics look like?
 - What does system congestion look like?
- Model results will dictate next steps
- Generation expansion based on what we already understand will help in determining if model is operating correctly
- This process will also assist in the development of how results will be analyzed

Levelized Cost of Energy for BAU Scenario

- Current 2010 values
- Costs will be develop for 2020, 2025, 2030

Questions?

Levelized Cost Model Assumptions (2010\$) - Latest EIA Data

Technology	Capacity (MW)	Capacity Factor	Heat Rate (Btu/kWh)	Capital (\$/kW)	Plant Life	Fuel Cost (\$/mmBtu)	Fixed O&M (\$/kW)	Var O&M (\$/MWh)
Adv. Coal w/o CCS	650	78%	8,800	\$2,896	20 yrs	\$2.00	\$35.97	\$4.25
Adv. Coal w/ CCS	650	80%	12,000	\$4,582	20 yrs	\$2.00	\$77.00	\$9.00
IGCC w/o CCS	600	58%	8,700	\$3,271	20 yrs	\$2.00	\$59.23	\$6.87
IGCC w/ CCS	520	58%	10,700	\$4,851	20 yrs	\$2.00	\$69.30	\$8.04
Conv. CT	85	10%	10,850	\$907	20 yrs	\$5.00	\$14.70	\$6.98
Adv. CT	210	10%	9,750	\$673	20 yrs	\$5.00	\$6.70	\$9.87
Conv. CC	540	50%	7,050	\$893	20 yrs	\$5.00	\$14.39	\$3.43
Adv. CC	540	50%	6,430	\$919	20 yrs	\$5.00	\$14.62	\$3.11
Nuclear	1118	90%	10,488	\$5,130	60 yrs	\$0.75	\$88.75	\$2.04
Solar PV	7	33%	-	\$4,274	20 yrs	\$ -	\$16.70	\$ -
Concentrating Solar	150	31%	-	\$5,493	20 yrs	\$ -	\$26.04	\$ -
Solar Thermal	100	38%	-	\$4,030	20 yrs	\$ -	\$64.00	\$ -
Wind Onshore	100	35%	-	\$2,322	20 yrs	\$ -	\$28.07	\$ -
Wind Offshore	400	40%	-	\$5,488	20 yrs	\$ -	\$53.33	\$ -
Geothermal	50	79%	10,990	\$4,141	20 yrs	\$ -	\$84.27	\$9.64
Biomass Wood	40	76%	13,000	\$3,411	20 yrs	\$5.00	\$100.50	\$5.00
Biomass Other	1	50%	17,500	\$6,600	20 yrs	\$1.00	\$50.68	\$16.64
Biomass Gasification	20	75%	12,350	\$7,332	20 yrs	\$3.00	\$338.79	\$16.64
Hydro	500	75%	-	\$3,076	20 yrs	\$ -	\$13.44	\$ -
Landfill Gas	30	79%	14,179	\$2,599	20 yrs	\$4.50	\$116.80	\$0.01

Generic Generating Resource Assumptions (2010\$)

Operating characteristics for existing generating resources

Technology	Heat Rate	Min up	Min down time	Variable O&M	Fixed O&M	Start Cost
	BTU/kWh	HRs	HRs	\$/MWh	\$/kW-yr	\$
Gas steam reheat	12,000	8	8	8.00	10.00	2,500
gas steam non-reheat	13,000	8	8	5.00	10.00	2,500
Supercritical Gas Steam	11,000	8	8	6.50	10.00	2,500
Combustion Turbines (LM6000)	9,500	1	1	8.00		2,000
Combustion Turbines ("E" class)	11,500	1	1	4.00		1,000
Combustion Turbines ("F" class)	10,500	1	1	8.00		5,000
Nuclear	10,000	168	24	4.00		
Coal	9,800	24	12	5.00		5,000
Combined Cycle (1995 and later)	7,200	6	4	2.65		15,000
Combined Cycle (LM6000)	8,000	4	8	5.00		5,000
Combined Cycle ("E" class)	8,500	4	4	3.00		3,000
Biomass	13,000	8	6	9.50		2,500

Generic Generating Resource Assumptions (2010\$)

Operating characteristics for new generating resources

Technology			Min	Min up	Min down	Variable		Estimated
	Capacity	Heat Rate	Capacity	time	time	0&M	Start Cost	CF
	MW	BTU/kWh	MW	HRs	HRs	\$/MWh	\$	%
Conventional CC (F type)	500	7,200	200	6	8	2.65	10,000	50%
Advanced CC (H & G type)	400	6,700	250	6	8	2.90	15,000	50%
Conventional CT (F type)	170	10,500	130	2	3	8.00	7,500	10%
Advanced CT (LMS100)	100	9,200	70	2	3	13.00	10,000	10%
Supercritical Coal	600	9,000	250	24	12	3.95	5,000	75%
Supercritical Coal W/ CCS	625	11,950	250	24	12	7.35	7,000	80%
IGCC	625	9,000	250	24	12	5.75	5,000	60%
IGCC W/ CCS	539	10,700	250	24	12	7.00	7,000	60%
Nuclear	1,100	10,300	600	168	48	4.00	-	90%
On shore Wind	100	-	-	-	-	-	-	35%
Off Shore Wind	100	-	-	-	-	-	-	40%
Geothermal	40	11,000	20	8	8	10.00	-	80%
Biomass - wood	40	13,000	15	8	8	9.50	2,500	75%
Biomass - other	1	17,500	3	8	8	15.00	1,000	50%
Solar PV	10	-	-	-	-	-	-	33%
Solar Thermal	100	-			-	-	-	38%

