Topaz Power Group Quick Start Task Force Meeting April 23, 2010

Austin, Texas

Ten Minute Non-Spinning Reserve Service

Background

Existing 30 Minute NSRS

Question and Answer

Background

In September 2009, Topaz proposed developing a 10 Minute NSRS in response to PUCT Project 37339

The proposal has been discussed at the QSTF, WMS and TAC

Quick Start Units

> 2-6 Minutes from Instruction Quick Start Unit fleet synchronizes. >5 minutes Quick Start Units ramp faster than Generation RRS. ≻7 minutes Quick Start Units provide more energy than Generation RRS.

Topaz Power Management, LP 4/27/2010

RRS vs Quick Start Units

Generation RRS and 10 Minute Quick Start Units have similar characteristics.

Generation RRS Capacity	Quick Start Unit Capacity	
Convertible to energy in 10 minutes	Convertible to energy in 10 minutes	
1,150 MW procured ~98% of deployments are <1,150 MW	~1,500 MW (Go-Live capacity)	
115 MW / minute ramp rate	>150 MW / minute ramp rate after 5 minutes	
Used for Contingency Reserve	May serve as Contingency Reserve	
Used as Backup Regulation	Can serve as Backup Regulation	

Quick Start Unit Value

Committing a Quick Start Unit in the Adjustment Period or Hour Ahead is comparable to deploying Responsive Reserve in the Adjustment Period or Hour Ahead.

Quick Start Unit capacity can avoid costs associated with excessive On-line reserves.

Topaz Power Group

10MNSRS Benefits

 Enhances reliability
 Reduces cost
 Creates a market opportunity for flexible Quick Start Units
 Potentially reduces excessive spinning reserves and emissions

Reliability Enhancement

Actions that reduce the duration or frequency of RRS deployments enhance reliability by maintaining unloaded RRS capacity.

Reliability Enhancement

10MNSRS can reduce RRS duration as: Responsive Reserve Recall

 10MNSRS can reduce RRS deployments as:
 Backup Regulation Up

RRS Recall

Near simultaneous 10MNSRS and RRS deployment hastens the recall of RRS.

Deployments
85% last longer than 5 minutes
53% last longer than 10 minutes

Quick Start Units can limit RRS
 deployment duration.
 Topaz Power Group Inc

Backup Regulation

Current Protocols utilize RRS as Backup Regulation.

 Off-line Generation Resources can serve this role, avoiding:
 Some RRS deployments; and
 Excessive costly Regulation Up procurement.

Nodal Changes

SCED promises On-line dispatch improvements.

 However, Real Time uncertainty, beyond On-line capability, will likely persist given:
 History of significant schedule changes;
 History of slow unit response; and
 Increase of renewable resources.

Cost Reduction

Off-line reserves, capable of delivering energy within minutes, provide a low cost alternative to excessive On-line reserves (beyond Responsive Reserve and Regulation Up)

On-line vs. Off-line Reserves

Energy Type	On-line Reserves	Off-line Reserves
Associated Energy	High Heat Rate Energy	Nothing
	Water	
	Variable O&M	
	Uplifted RUC Costs	
Deployment Energy	Potentially inefficient energy Low ramp rates	Highly efficient energy High ramp rates Start-up Cost

30 Minute NSRS

Reach LSL in 25 minutes

Reach instructed level in 30 minutes

Deployment
 Load forecasting errors
 After system disturbances
 On-line reserve depletion

Nodal NSRS Market

Over 2,000 MW can deliver energy in <25 minutes

No distinction between Off-line Resources with response times >30 cycles and <90,000 cycles</p>

 No incentive to deliver energy any faster than 25 minutes.
 Topaz Power Group ...

Thermal NSRS Technology

 10 minutes is today's state-of-the-art for the thermal Brayton and Otto Cycles
 The future may bring faster Start-Up times.

Lower cost CC Resources can deliver energy in 30 minutes

- Siemens provides:
 - Brayton Cycle in 5-10 minutes
 - Combined Cycle in 15-30 minutes

Topaz Power Group

ERCOT Actions

 Reluctant to utilize 30MNSRS because of extended lead time
 OOMEVDI Quick Start Units in lieu of or in advance of NSRS
 Without an intermediate tool, ERCOT must rely on RRS as Backup Regulation

Questions