# **ERCOT Target Reserve Margin Analysis**

Prepared for: Electric Reliability Counsel of Texas (ERCOT)

Date Submitted: January 18, 2007

### Prepared by:

Global Energy 2379 Gateway Oaks Drive, Suite 200 Sacramento, CA 95833 (916) 569-0985 www.globalenergy.com

#### Contact:

Richard Lauckhart, Vice President Bryan Swann, Senior Consultant 916.569.0985

# **Global Energy** Decisions

This report constitutes and contains valuable trade secret information of Global Energy Decisions. Disclosure of any information contained in this report by you and your Company to anyone other than employees of your Company ("Unauthorized Persons") is prohibited unless authorized in writing by Global Energy Decisions. You will take all necessary precautions to prevent this report from being available to Unauthorized Persons, as defined above, and will instruct and make arrangements with employees of your Company to prevent any unauthorized access or unauthorized use of this report. You will not lend, sell, or otherwise transfer, this report (or information contained therein or parts thereof) to any Unauthorized Person, as defined above, without Global Energy Decisions' prior written approval.

The opinions expressed in this report are based on Global Energy Decisions' judgment and analysis of key factors expected to affect the outcomes of future energy markets. However, the actual operation and results of energy markets may differ from those projected herein. Global Energy Decisions makes no warranties, expressed or implied, including without limitation, any warranties of merchantability or fitness for a particular purpose, as to this report or other deliverables or associated services. Specifically, but without limitation, Global Energy Decisions makes no warranty or guarantee regarding the accuracy of any forecasts, estimates, or analyses, or that such work products will be accepted by any legal, financial, or regulatory body.

PROPRIETARY AND CONFIDENTIAL

1470 Walnut Street, Suite 401 | Boulder, CO 80302 720-221-5700

<sup>©</sup> Copyright 2006, Global Energy Decisions, LLC

All rights reserved. No part of this report may be reproduced or transmitted in any form or means, electronic or mechanical, including photocopying, recording, or by any information storage or retrieval system without the permission of Global Energy Decisions, LLC.

## **Table of Contents**

### SECTION

### PAGE

| 1 Analytical Methodology                                | 1-1 |
|---------------------------------------------------------|-----|
| 1.1 ERCOT Simulation Topology                           | 1-1 |
| 1.2 Stochastic Process                                  | 1-1 |
| 1.2.1 Load Stochastic Process and Volatility Parameters | 1-1 |
| 1.2.2 Modeling of Volatility in Wind Generation         | 1-3 |
| 1.2.3 Variability in Unit Forced Outage                 | 1-4 |
| 1.3 ELCC of Wind Capacity in ERCOT                      | 1-4 |
| 1.4 Determination of LOLP and EUE                       | 1-5 |
| 1.4.1 Calculating the Reserve Margin                    | 1-6 |
| 1.4.2 Execution of LOLP and EUE Analysis                | 1-7 |
| 2 LOLP and EUE Results                                  | 2-1 |
| 2.1 Gas Turbine Buildout Scenario                       | 2-1 |
| 2.2 Pulverized Coal Steam Turbine Build-out Scenario    | 2-2 |
| 2.3 Comparison of Gas and Coal Scenarios                | 2-3 |
| Appendix A                                              |     |

# List of Figures

| Figure 1-1 ERCOT Load Distribution - 100 Iterations                                 | .1-2 |
|-------------------------------------------------------------------------------------|------|
| Figure 1-2 ERCOT Load Distribution - Confidence Intervals                           | .1-3 |
| Figure 1-3 ERCOT Stochastic Wind Data                                               | .1-4 |
| Figure 2-1 Gas Turbine Scenario - Loss of Load Events in 10 Years                   | .2-2 |
| Figure 2-2 Pulverized Coal Steam Turbine Scenario – Loss of Load Events in 10 Years | .2-3 |
| Figure 2-3 Gas and Coal Scenario Comparison - Loss of Load Events in 10 Years       | .2-3 |

## List of Tables

| Table 1-1 ERCOT Load Stochastic Parameters                 | 1-2 |
|------------------------------------------------------------|-----|
| Table 1-2 ELCC Test Results                                | 1-5 |
| Table 1-3 2008 ERCOT - Expected Reserve Margin             | 1-7 |
| Table 1-4 Key Operational Differences                      | 1-7 |
| Table 2-1 Gas Turbine Scenario - LOLP and EUE Results      | 2-1 |
| Table 2-2 Gas Turbine Scenario - LOLP and EUE Results      | 2-2 |
| Table A- 1 ERCOT 2008 Generation Resources - Summer Rating | A-1 |

## **Executive Summary**

The Electric Reliability Counsel of Texas, Inc (ERCOT) is required to provide information to the Public Utility Commission of Texas and to the Texas State Legislature regarding the current and projected status of the Texas wholesale electricity market. The forecasted relationship between generation capacity and load is carefully scrutinized by regulatory authorities. In order to fulfill its responsibilities, ERCOT requires up-to-date analysis of the relationship between the probability of loss-of-load events and generating capacity reserve margins. The most recent Reserve Margin Analysis for ERCOT was completed in March 2002. Due to the changes in the ERCOT market since that time, including the retirement and mothballing of older gas-fired generation, the development of newer combined-cycle generation, and the increase in generation from uncontrolled units such as wind turbines, ERCOT solicited bids for an updated study which would provide an estimation of the effective load carrying capability (ELCC) of wind capacity and both loss of load probability (LOLP) and expected unserved energy (EUE). ERCOT enlisted Global Energy Decisions to conduct such a study.

The purpose of this study is to quantify the ELCC of wind capacity in ERCOT for reserve margin calculation purposes and to estimate LOLP and EUE at different reserve margin levels for the year 2008. Global Energy performed a stochastic analysis using the regional analytics module, MARKETSYM, to perform a study of the ERCOT system for the year 2008 where load, system wind generation, and unit forced outage were stochastic variables. The ERCOT Fall 2005 Reference Case data model was used as a basis for this study. This study:

- Presents ERCOT system characteristics as modeled in this study;
- Discusses the modeling methodology for determining ELCC of wind capacity;
- Discusses the modeling methodology for determining LOLP and EUE; and
- Provides the results of the ERCOT 2008 LOLP and Expected Unserved Energy (EUE) analysis.

In recent years, ERCOT has used a 12.5 percent planning reserve margin requirement. In calculating the planning reserve margin, there are several factors that need to be defined in order to accurately calculate the planning reserve margin. These factors are load forecast, installed capacity, load participation or load acting as a resource (LaaR), wind generation capacity, "mothballed" capacity, surrounding market import capability, capacity that generate on the local electric system or generate for an adjacent system, and retired capacity.<sup>1</sup> While most of these factors are fairly straight forward, one of the challenging factors is wind capacity in reserve margin calculation. The question is, "How much of installed wind capacity should I count towards reserve margin calculation." With ERCOT being rich in wind resources, this is a very important question. By 2008, ERCOT expects to have over 4,500 MW of nameplate wind capacity online and knowing how

<sup>&</sup>lt;sup>1</sup>ERCOT Reserve Margin Update PowerPoint Presentation, April 7, 2005 -

http://www.ercot.com/news/presentations/2006/op-reservemargin040705\_final.pdf

much of that wind capacity can be included in reserve margin calculation is imperative for resource planning purposes.

Global Energy's MARKETSYM, a stochastic system dispatch model, was used to determine the ELCC of wind capacity and the LOLP and EUE at various levels of reserve margin for ERCOT in 2008. As a result of this study, Global Energy concluded that the ELCC of wind capacity is 8.7 percent of its nameplate capacity for reserve margin calculations. Global Energy then used this to calculate ERCOT reserve margins and develop the LOLP and EUE for the ERCOT region in 2008 using two different resource build-outs: one with gas turbines and one with coal steam turbines. Global Energy concludes that under the resource build-out scenario using only gas turbines that a 12.9 percent reserve margin yields a 1 day in 10 year Loss of Load Event (LOLE). Under the resource build-out scenario using coal steam turbines, Global Energy concludes that a 13.6 percent reserve margin yields a 1 day in 10 LOLE. The complete results of the LOLP and EUE analysis can be found in Section 3 of this report.

# **1 ANALYTICAL METHODOLOGY**

Global Energy utilized its regional market analytics software module, MARKETSYM, to perform an ERCOT-wide stochastic analysis which was accomplished in two parts. The first part was determining what percentage of wind capacity could be counted toward reserve margin calculations (ELCC). The second part of the analysis was applying the ELCC of wind to the reserve margin calculation and running different reserve margins levels for the year 2008 and establishing LOLP and EUE at these levels. During both parts of this analysis, Global Energy stochastically simulated the hourly dispatch of ERCOT, where Monte Carlo draws were performed for 100 iterations in order to capture the impact of uncertainties of key factors. The key factors in this analysis were unit forced outages, weather related load volatility, and the unpredictability of available wind generation. Global Energy used its ERCOT Fall 2005 Reference Case data model as a basis for this study.<sup>2</sup>

#### 1.1 ERCOT SIMULATION TOPOLOGY

Global Energy utilized a single zone topology in this study as the objective was to evaluate all resource and load in ERCOT as a whole. This analysis did not include consideration of transmission constraints.

#### 1.2 STOCHASTIC PROCESS

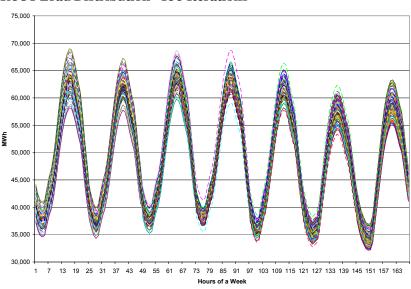
MARKETSYM is designed to simulate and provide output that enable the analysis of risks associated with serving load. The volatile inputs fed into the model for purposes of this analysis are load volatility, the unpredictability of available wind generation, and unit forced outages. Each of these volatile model inputs were treated stochastically in this analysis independent of one another. An explanation of each follows.

#### 1.2.1 Load Stochastic Process and Volatility Parameters

Variability in load was modeled explicitly using a normal mean-reverting model as a component of the two-factor model described below. Mean reversion implies that after a load is initially disrupted (higher or lower), it will tend to revert back towards its expected value. The rate at which load will tend to revert to the expected value is an input to the process.

The stochastic model used to perform the stochastic draws on load is a two-factor model in which one factor represents short-term or temporary deviations and the other factor represents long term or cumulative deviations. Long-term effects include trends such as change in annual peak demand growth and other forces whose effects are of long duration, which follow a random walk. In the short-term, shocks may drive variables away from their long-term equilibrium level, but adjustments processes tend to pull them

<sup>&</sup>lt;sup>2</sup> Changes to the base data of new station entry, and the status of mothballed and retired stations were made by recommendation from ERCOT staff.


back to their equilibrium or expected level. In other words, short-term shocks such as changes to load due to weather are mean reverting. The rate at which the random variable tends to revert to the expected value is an input to the process. The two-factor model combines these two processes.

The volatility estimates for load in the ERCOT region are based on historical hourly load data from 1995-2004. The estimated short-term stochastic parameters for ERCOT load, used as inputs into the MARKETSYM stochastic analysis, are presented in Table 1-1 below. As a result of these stochastic parameter inputs, a distribution of load volatility is created. Figure 1-2 illustrates the stochastic draws for load for a representative week in August.

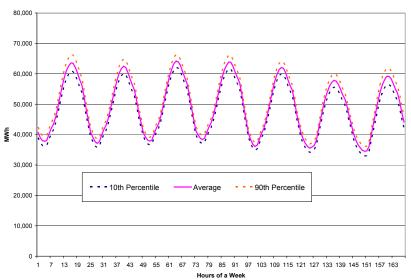
#### Table 1-1 ERCOT Load Stochastic Parameters

| Season <sup>3</sup> | ERCOT<br>Load |        |  |
|---------------------|---------------|--------|--|
| 2008                | Alpha⁴        | Sigma⁵ |  |
| Winter              | 0.311         | 0.024  |  |
| Spring              | 0.234         | 0.021  |  |
| Summer              | 0.248         | 0.020  |  |
| Fall                | 0.229         | 0.021  |  |

SOURCE: Global Energy.



#### Figure 1-1 ERCOT Load Distribution - 100 Iterations


SOURCE: Global Energy.

<sup>&</sup>lt;sup>3</sup> Season definition: Winter = December-February; Spring = March-May; Summer = June-August; Fall = September-November.

<sup>&</sup>lt;sup>4</sup> Alpha is the mean reversion parameter.

<sup>&</sup>lt;sup>5</sup> Sigma is the volatility parameter.

Figure 1-3 illustrates the 10<sup>th</sup>, Average, and 90<sup>th</sup> confidence intervals for a representative week in August.

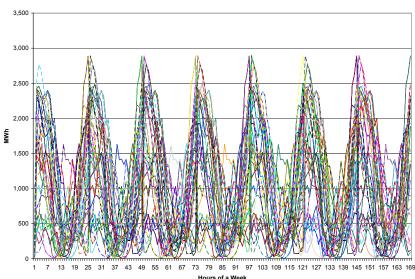




#### 1.2.2 Modeling of Volatility in Wind Generation

Using hourly wind shapes of expected available wind stations provided by ERCOT, Global Energy created 100 iterations of hourly wind patterns for use in the model that reflect the unpredictable nature of this resource type.<sup>6</sup> The stochastic data was developed external to MARKETSYM, and introduced during model simulation. The following method was used in creating the stochastic wind data:

- The summation of all wind station generation was taken on each hour to develop an all system hourly available wind generation for each hour which resulted in one 8,784 (year 2008) shape. This aggregate hourly wind shape represented the available wind generation on each hour of 2008 for the entire ERCOT system.
- 2. To capture the randomness of wind generation, Global Energy developed a random number generator spreadsheet which randomized daily profiles within a month. For example, in creating the 24 hour by 100 iterations of data for January 1, the random number generator picked which hourly day profile in January to choose. Since January has 31 days, the random number generator chose any one of the 31 days of January for each of the 100 iterations for January 1. So for January 1, iteration 1 may use the hourly profile of day 30 of January, iteration 2 may use the hourly profile of


SOURCE: Global Energy.

<sup>&</sup>lt;sup>6</sup> The initial hourly wind shapes provided by ERCOT were developed by AWS Truewind LLC. The shapes were derived from 15 years of meteorological data using a combination of meteorological/topographical analysis. Wind speeds were then converted to wind farm generation using a power curve representing a composite of currently available turbine designs. The result was an average year of generation for modeled wind generation sites in ERCOT.

day 2 of January and so on. This process was continued until all days of the year for each of the 100 iterations was developed.

3. The randomized wind data was then fed into MARKETSYM through XML integration and included in the model simulation.

Figure 1-4 below illustrates the stochastic wind generation used in this study for a representative week in August.



#### Figure 1-3 ERCOT Stochastic Wind Data

SOURCE: Global Energy.

#### 1.2.3 Variability in Unit Forced Outage

The uncertainty of unit forced outages was stochastically quantified on an hourly basis in the simulation model. Forced outages were represented by an equivalent annual forced outage rate at each generator and treated stochastically in Monte Carlo mode. Monte Carlo draws determine if a resource was on forced outage or not. If a unit has an expected forced outage rate of, for example, 5 percent, then the average outage hours for that unit over the 100 iterations is 5 percent of the time. The Monte Carlo draws are designed such that over a large number of random draws of unit outage, statistically one would expect the average hours of a unit being forced out during a year to be 5 percent. However, statistically it is possible that over 100 iterations the average outage rate is slightly above or below the 5 percent number. This process results in different outage draws on each of the 100 iterations performed in this analysis capturing the uncertainty in available resources on any given hour.

#### 1.3 ELCC OF WIND CAPACITY IN ERCOT

Global Energy used its MARKETSYM module to perform a stochastic analysis of the effective load carrying capability (ELCC) of wind in ERCOT. Determining the load carrying capability of wind capacity is important due its unpredictability. With the results

of the ELCC test, it is possible to accurately calculate ERCOT's reserve margin for use in the LOLP and EUE analysis. As described above, the volatile inputs used in this analysis are: weather related load volatility, the unpredictability of available wind generation, and unit forced outages. Global Energy used the following method in determining the ELCC of wind capacity:

- 1. An initial MARKETSYM LOLP test was done to ensure there was enough unserved energy in 2008 for the ELCC test to have significance. The objective is to have a reserve margin that yields LOLP that is greater than the industry standard of 1 day in 10.
- Through an iterative process of stochastic MARKETSYM simulations, generic 2. pulverized coal stations were added to the data model until approximately 1 day (24 hours) in 10 years of unserved energy was reported.
- Once the 1 day in 10 years of unserved energy criterion was met, one 550 MW generic 3. pulverized coal station was removed from the study.
- Through another iterative process of stochastic MARKETSYM simulations, generic 4. wind capacity was then added until approximately 1 day in 10 years of unserved energy was reported.

As a result of the ELCC test, it was found that 6,300 MW of wind capacity was added to reach the same LOLP level as 550 MW of generic pulverized coal capacity. The ELCC analysis concludes that 8.7 percent of installed wind capacity should be counted in the reserve margin calculation. Table 1-2 summarizes the results of the ELCC test.

| ELCC Test Results                       |                                  |                    |              |
|-----------------------------------------|----------------------------------|--------------------|--------------|
|                                         | Pulverized Coal<br>Capacity (MW) | Wind Capacity (MW) | ELCC of Wind |
| 1 Day in 10 Years of<br>Unserved Energy | 550                              | 6,300              | 8.7%         |

Table 1-2

SOURCE: Global Energy.

#### DETERMINATION OF LOLP AND EUE 1.4

Global Energy's LOLP analysis methodology is a marked improvement over traditional methods for determining LOLP. Where, in the past, company's often computed an annual LOLP index as the summation of daily probabilities (often termed the "daily risks") over the entire year being studied, Global Energy computes LOLP based on a stochastic production cost model simulation where all relevant factors and uncertainties are included in the simulation. The analysis predicts both the probability of not serving a specific amount of load, and in addition provides insights into the dimension and amount of required energy that would not be served-referred to as unserved energy or expected unserved energy (EUE). Global Energy's LOLP methodology calculates LOLP for each hour where the LOLP is the probability that available capacity in a given hour is less than load. As recommended by ERCOT staff, the primary metric used in accessing resource adequacy is Loss of Load Events (LOLE), where the objective is achieving a reserve

margin that equates to a LOLE of 1 day in 10 years. LOLE is described later in this section.

#### 1.4.1 Calculating the Reserve Margin

A number of questions arise when the objective is calculating an accurate planning reserve margin for a system. The common method of calculating planning reserve margin is represented by the following equation:

[(Resources + Purchases) - (Peak Load + Sales)] (Peak Load + Sales)

Identifying and assigning a value to each of these components offers several "counting" questions. How much of wind capacity to you count in the calculation? How are mothballed units counted in the calculation of reserve margin? What is considered the peak load hour? How is import capability counted?

<u>Peak Load</u>: Peak load is generally the 50/50 (expected peak) of the control area. In this study, where ERCOT is modeled as a single zone, the 50/50 peak for the entire system occurs in August.

<u>Resources</u>: The maximum capacities (nameplate) of thermal and hydro stations that are in ERCOT are included in the calculation. Wind capacity is counted at 8.7 percent based on the ELCC of wind capacity analysis described earlier. Interruptible loads and demand side management programs are included as resources. Approximately 5,500 MW of mothballed units that are not expected to come back online before August 2008 have been omitted from the reserve margin calculation<sup>7</sup>. A list of installed generation resources used in this analysis is provided in Appendix A.

<u>Imports and Purchases</u>: In this study, only known power purchase agreements with outside markets were considered in the calculation of the reserve margin. Import capability was not counted as additional capacity.

Table 1-3 exhibits the expected load and resource balance in ERCOT in the year 2008.8

<sup>&</sup>lt;sup>7</sup> Unit retirement and mothball station status assumptions were provided by ERCOT staff.

<sup>&</sup>lt;sup>8</sup> Peak load is calculated from the stochastic simulation as the average of peaks under each of the 100 iterations. Thermal capacity total reflects expected retirements and mothball unit status based on information provided by ERCOT staff. Hydro capacity was counted at maximum capacity. Wind is counted at 8.7 percent of total expected installed wind capacity in 2008. Purchases represent known scheduled imports from markets outside of ERCOT.

| 2008 ERCOT - Expected Reserve Margin |        |  |  |
|--------------------------------------|--------|--|--|
| 2008 L&R                             | MW     |  |  |
| Peak Load                            | 64,367 |  |  |
| Resources                            |        |  |  |
| Thermal                              | 71,742 |  |  |
| Hydro                                | 554    |  |  |
| Wind                                 | 278    |  |  |
| Purchases                            | 54     |  |  |
| Total Resources                      | 72,628 |  |  |
| Reserve Margin                       | 12.8%  |  |  |

Table 1-3 n

SOURCE: Global Energy.

#### 1.4.2 Execution of LOLP and EUE Analysis

In order to perform this study, it is necessary to run the stochastic analysis at several levels of supply reserve. As such, additional supplies need to be added in order to move the supply reserve level from one level to a higher level of reserve. In this study, Global Energy performed two LOLP and EUE studies using different resource types to increase reserve margin levels: one using gas turbines and the other using pulverized coal steam turbines. Table 1-4 exhibits the key operational differences between the two resource types that affect the results of the LOLP and EUE analysis.

#### Table 1-4 **Key Operational Differences**

| Resource Type            | Max Capacity | Forced Outage Rate |
|--------------------------|--------------|--------------------|
| Pulverized Coal ST       | 500          | 6%                 |
| Gas Turbine              | 180          | 2%                 |
| COUDCE: Clabel En energy |              |                    |

SOURCE: Global Energy.

The reserve margin levels used in this study for the LOLP and EUE analysis are: 10 percent, 12 percent, 14 percent, 16 percent, 18 percent, and 20 percent. In the case of achieving a 10 percent reserve margin, since the base case resource and load resulted in a reserve margin greater than 10 percent, Global Energy increased load to achieve the 10 percent target reserve margin level. Beginning at the 10 percent reserve margin, resources were added to meet the next studied target reserve margin.

The following outputs are produced and reported in this study:

- Loss of Load Events (LOLE) A loss of load event is described as any single hour or group of consecutive hours where load exceeds available resources. For example, 1 hour alone of unserved energy constitutes a LOLE just as 5 consecutive hours of unserved energy constitutes an LOLE. Results are given as average Loss of Load Events in ten years.
- EUE as a function of planning margin EUE is the average amount of ENS, • measured in MWh, across all iterations of the stochastic simulation. Results are given as average MWh with EUE in ten years.

• LOLP as a function of planning margin – LOLP is tracked and reported by MARKETSYM. A Loss-of-Load hour is an hour where demand exceeds supply. Lossof-Load hours do not indicate magnitude or duration of the loss-of-load. Results are given as number of hours with loss-of-load (24hrs) in ten years.

The next section reports the results of the LOLP and EUE analysis.

# 2 LOLP AND EUE RESULTS

This section reports the results of the LOLP and EUE studies for the gas turbine build-out scenario and the pulverized coal build-out scenario. The goal of the LOLP and EUE study was to determine what reserve margin would achieve a Loss of Load Event (LOLE) expected rate of 1 day in 10 years. A LOLE, as defined in the previous section, is defined as any single hour or group of consecutive hours where load exceeds available resources. In addition to LOLE results, Global Energy reports average MWh of unserved energy, average hours of ENS, and loss of load probabilities, at each of the reserve margin levels. All results are reported using the "1 day in 10 year" metric.

#### 2.1 GAS TURBINE BUILDOUT SCENARIO

Table 2-1 provides detail on model results for the gas turbine build-out scenario. As can be gathered from the table, a reserve margin of approximately 12.9 percent yields a 1 day in 10 year LOLE using gas turbines as the build-out resource.

| Reserve Margin <sup>1, 2</sup> | Average Loss of<br>Load Events in 10<br>Years <sup>3</sup> | Average MWhs of ENS in 10 Years | Average Hours of<br>ENS in 10 Years | Loss of Load<br>Probability (%) |
|--------------------------------|------------------------------------------------------------|---------------------------------|-------------------------------------|---------------------------------|
| 10.00%                         | 5.1                                                        | 9,020                           | 9                                   | 0.011%                          |
| 12.00%                         | 1.4                                                        | 2,570                           | 2.6                                 | 0.003%                          |
| 14.00%                         | 0.5                                                        | 515                             | 0.9                                 | 0.001%                          |
| 16.00%                         | 0                                                          | 0                               | 0                                   | 0.000%                          |
| 18.00%                         | 0                                                          | 0                               | 0                                   | 0.000%                          |
| 20.00%                         | 0                                                          | 0                               | 0                                   | 0.000%                          |

 Table 2-1

 Gas Turbine Scenario - LOLP and EUE Results

1. Reserve margins increased by adding approximately 1,300 MW of GT Gas capacity per 2% increase in reserve margin.

2. Wind generation counted at 8.7% of nameplate capacity.

3. Events with consecutive hours of ENS are counted as one event.

SOURCE: Global Energy.

While the results suggest at a reserve margin of 16 percent and greater, that the number of loss of load events is zero, in reality the probability of a loss of load event never reaches zero, no matter how much capacity is added to the system. The finite limit of 100 iterations used in this analysis, restricts the chance of a loss of load event which is reflected in Table 2-1 above.

Figure 2-1 below illustrates the LOLE at the different reserve margin levels. The intersection of the LOLE curve and the red dotted line represents the 12.9 percent reserve margin that yields a LOLE of 1 day in 10 years.

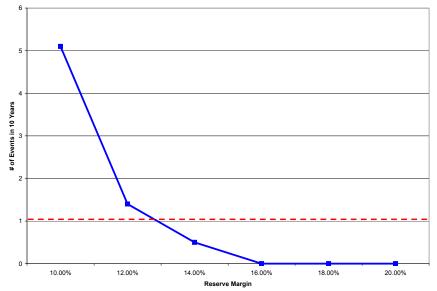



Figure 2-1 Gas Turbine Scenario - Loss of Load Events in 10 Years

SOURCE: Global Energy.

#### 2.2 PULVERIZED COAL STEAM TURBINE BUILD-OUT SCENARIO

Table 2-2 provides detail on model results for the pulverized coal steam turbine build-out scenario. As can be gathered from the table, a reserve margin of approximately 13.6 percent yields a 1 Day in 10 year LOLE using pulverized coal steam turbines as the build-out resource.

 Table 2-2

 Pulverized Coal Steam Turbine Scenario - LOLP and EUE Results

| Reserve Margin <sup>1, 2</sup> | Average Loss of<br>Load Events in 10<br>Years <sup>3</sup> | Average MWhs of<br>ENS in 10 Years | Average Hours of<br>ENS in 10 Years | Loss of Load<br>Probability (%) |
|--------------------------------|------------------------------------------------------------|------------------------------------|-------------------------------------|---------------------------------|
| 10.00%                         | 5.1                                                        | 9,020                              | 9                                   | 0.011%                          |
| 12.00%                         | 1.9                                                        | 5,800                              | 4                                   | 0.005%                          |
| 14.00%                         | 0.8                                                        | 2,589                              | 2                                   | 0.002%                          |
| 16.00%                         | 0.6                                                        | 916                                | 1                                   | 0.001%                          |
| 18.00%                         | 0.3                                                        | 237                                | 0.3                                 | 0.000%                          |
| 20.00%                         | 0.2                                                        | 93                                 | 0.2                                 | 0.000%                          |

1. Reserve margins increased by adding approximately 1,300 MW of ST Coal capacity per 2% increase in reserve margin.

2. Wind generation counted at 8.7% of nameplate capacity.

3. Events with consecutive hours of ENS are counted as one event.

SOURCE: Global Energy.

Figure 2-2 below illustrates the LOLE at the different reserve margin levels. The intersection of the LOLE curve and the red dotted line represents the 13.6 percent reserve margin that yields a LOLE of 1 day in 10 years.

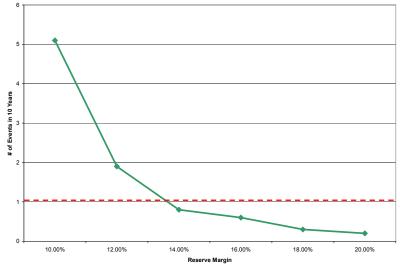
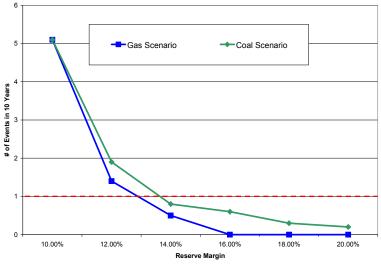




Figure 2-2 **Pulverized Coal Steam Turbine Scenario – Loss of Load Events in 10 Years** 

#### 2.3 COMPARISON OF GAS AND COAL SCENARIOS

Figure 2-3 illustrates the differences in LOLE between the gas and coal build-out scenarios. As can be seen in the graph, an LOLE of 1 day in 10 years is achieved with a lower reserve margin using the gas build-out.

Figure 2-3 Gas and Coal Scenario Comparison - Loss of Load Events in 10 Years



SOURCE: Global Energy.

SOURCE: Global Energy.

The differences in results between the Gas and Coal build-out scenarios can be explained by two factors. The first factor is that gas turbines have a lower forced-outage rate than pulverized coal steam turbines, 2 percent and 6 percent respectively.

The second factor that causes differences in LOLE between the gas and coal build-out scenarios is the difference in size of the units being added. For example, in the gas scenario to transition from the 10 percent reserve margin to the 12 percent reserve margin, eight gas turbines of 162.5 MW are added. In the coal scenario to transition from the 10 percent reserve margin, three coal units are added, two at 500 MW a piece and one at 300 MW. The same amount of capacity is being added in the two cases, however the build-out in the gas scenario is more flexible. Consider the minimum MW amount of forced outage in each of the scenarios if one was to occur. During a forced outage, the gas scenario would experience a minimum loss of 162.5 MW while the coal scenario would experience a minimum loss of 300 MW. The gas build-out is more flexible because a single forced outages event will eliminate less of the available capacity.

In conclusion, due to the two factors described above, to achieve the same LOLE as the gas build-out scenario more coal capacity would need to be added to achieve the same LOLE.

# APPENDIX A

# Table A- 1ERCOT 2008 Generation Resources - Summer Rating

| Generator Name                | Net Capacity (Peak) | Unit Type | Fuel Type      |
|-------------------------------|---------------------|-----------|----------------|
| A.V. Rosenberg 1a             | 240                 | CC        | Natural Gas    |
| A.V. Rosenberg 1b             | 240                 | CC        | Natural Gas    |
| Abbott TP 3                   | 3                   | Hydro     | Hydro          |
| AES Deepwater 1               | 160                 | ST        | Petroleum Coke |
| AES Wolf Hollow 1a            | 357                 | CC        | Natural Gas    |
| AES Wolf Hollow 1b            | 357                 | CC        | Natural Gas    |
| Amistad Dam & Power           | 70                  | Hydro     | Hydro          |
| Atascocita                    | 7                   | IC        | Biomass        |
| Atkins 3                      | 12                  | ST        | Natural Gas    |
| Atkins 4                      | 22                  | ST        | Natural Gas    |
| Atkins 5                      | 25                  | ST        | Natural Gas    |
| Atkins 6                      | 50                  | ST        | Natural Gas    |
| Atkins GT 7                   | 21                  | GT        | Natural Gas    |
| Austin                        | 17                  | Hydro     | Hydro          |
| BASF Freeport 1               | 93                  | CG        | Natural Gas    |
| Bastrop Energy 1a             | 275                 | CC        | Natural Gas    |
| Bastrop Energy 1b             | 275                 | CC        | Natural Gas    |
| Bayou Cogen GT EN1            | 70                  | GT        | Natural Gas    |
| Bayou Cogen GT EN2            | 70                  | GT        | Natural Gas    |
| Bayou Cogen GT EN3            | 70                  | GT        | Natural Gas    |
| Bayou Cogen GT EN4            | 70                  | GT        | Natural Gas    |
| Baytown 1a                    | 176                 | CC        | Natural Gas    |
| Baytown 1b                    | 176                 | CC        | Natural Gas    |
| Baytown 1c                    | 176                 | CC        | Natural Gas    |
| Big Brown 1                   | 570                 | ST        | Coal           |
| Big Brown 2                   | 560                 | ST        | Coal           |
| Big Spring 1                  | 13                  | ST        | Other          |
| Big Spring Wind Power         | 4                   | WT        | Wind           |
| Blue Bonnet                   | 4                   | IC        | Biomass        |
| Bosque 1                      | 154                 | GT        | Natural Gas    |
| Bosque 2                      | 154                 | GT        | Natural Gas    |
| Bosque CC 3a                  | 253                 | CC        | Natural Gas    |
| Brazos Valley 1a              | 337                 | CC        | Natural Gas    |
| Brazos Valley 1b              | 337                 | CC        | Natural Gas    |
| Brazos Wind Farm              | 14                  | WT        | Wind           |
| Buchanan (TX)                 | 49                  | Hydro     | Hydro          |
| Buffalo Gap Wind              | 31                  | WT        | Wind           |
| C R Wing Cogen Plant 1-3      | 200                 | CG        | Natural Gas    |
| Table continued on next page. |                     |           |                |

| Generator Name         | Net Capacity (Peak) | Unit Type | Fuel Type   |
|------------------------|---------------------|-----------|-------------|
| Callahan Divide Wind   | 10                  | WT        | Wind        |
| Canyon                 | 6                   | Hydro     | Hydro       |
| Cedar Bayou 1          | 750                 | ST        | Natural Gas |
| Cedar Bayou 2          | 750                 | ST        | Natural Gas |
| Channel Lyondell 1a    | 210                 | CC        | Natural Gas |
| Channel Lyondell 1b    | 204                 | CC        | Natural Gas |
| Clear Lake Cogen 1a    | 137                 | CC        | Natural Gas |
| Clear Lake Cogen 1b    | 137                 | CC        | Natural Gas |
| Clear Lake Cogen 1c    | 137                 | CC        | Natural Gas |
| Cleburne Cogen 1       | 259                 | CC        | Natural Gas |
| Coastal Plains         | 5                   | IC        | Biomass     |
| Coleto Creek 1         | 632                 | ST        | Coal        |
| Comanche Peak 1        | 1084                | NP        | Uranium     |
| Comanche Peak 2        | 1124                | NP        | Uranium     |
| Corpus Christi 1a      | 245                 | CG        | Natural Gas |
| Corpus Christi 1b      | 245                 | CG        | Natural Gas |
| Dansby 1               | 110                 | ST        | Natural Gas |
| Dansby 2               | 46                  | GT        | Natural Gas |
| Decker Creek 1         | 354                 | ST        | Natural Gas |
| Decker Creek 2         | 448                 | ST        | Natural Gas |
| Decker Crk GT 1        | 52                  | GT        | Natural Gas |
| Decker Crk GT 2        | 52                  | GT        | Natural Gas |
| Decker Crk GT 3        | 52                  | GT        | Natural Gas |
| Decker Crk GT 4        | 52                  | GT        | Natural Gas |
| Decordova 1            | 804                 | ST        | Natural Gas |
| Decordova GT 1         | 75                  | GT        | Natural Gas |
| Decordova GT 2         | 75                  | GT        | Natural Gas |
| Decordova GT 3         | 75                  | GT        | Natural Gas |
| Decordova GT 4         | 75                  | GT        | Natural Gas |
| Deer Park Energy 1a    | 207                 | CC        | Natural Gas |
| Deer Park Energy 1b    | 207                 | CC        | Natural Gas |
| Deer Park Energy 1c    | 207                 | CC        | Natural Gas |
| Deer Park Energy 1d    | 207                 | CC        | Natural Gas |
| Delaware Mountain Wind | 3                   | WT        | Wind        |
| Denison Dam            | 80                  | Hydro     | Hydro       |
| Desert Sky Wind Proj 1 | 7                   | WT        | Wind        |
| Desert Sky Wind Proj 2 | 7                   | WT        | Wind        |
| DFW Gas Recovery       | 6                   | GT        | Biomass     |
| Dow Chemical 1a        | 261                 | CC        | Natural Gas |
| Dow Chemical 1b        | 261                 | CC        | Natural Gas |
| Dow Freeport 1a        | 50                  | CG        | Natural Gas |

| Generator Name          | Net Capacity (Peak) | Unit Type | Fuel Type   |
|-------------------------|---------------------|-----------|-------------|
| Dunlap TP 1             | 4                   | Hydro     | Hydro       |
| Eagle Pass              | 6                   | Hydro     | Hydro       |
| Ennis 1                 | 343                 | CC        | Natural Gas |
| Equistar Channelview 1a | 244                 | CGCC      | Natural Gas |
| Equistar Channelview 1b | 244                 | CGCC      | Natural Gas |
| ExTex LaPorte 1         | 40                  | GT        | Natural Gas |
| ExTex LaPorte 2         | 40                  | GT        | Natural Gas |
| ExTex LaPorte 3         | 40                  | GT        | Natural Gas |
| ExTex LaPorte 4         | 40                  | GT        | Natural Gas |
| Falcon Dam & Power      | 39                  | Hydro     | Hydro       |
| Fayette PP 1            | 580                 | ST        | Coal        |
| Fayette PP 2            | 580                 | ST        | Coal        |
| Fayette PP 3            | 445                 | ST        | Coal        |
| Forest Creek Wind       | 19                  | WT        | Wind        |
| Formosa Cogen           | 40                  | CG        | Natural Gas |
| Forney Project 1a       | 294                 | CC        | Natural Gas |
| Forney Project 1b       | 294                 | CC        | Natural Gas |
| Forney Project 1c       | 294                 | CC        | Natural Gas |
| Forney Project 2a       | 294                 | CC        | Natural Gas |
| Forney Project 2b       | 294                 | CC        | Natural Gas |
| Forney Project 2c       | 294                 | CC        | Natural Gas |
| Freestone Energy 1a     | 244                 | CC        | Natural Gas |
| Freestone Energy 1b     | 244                 | CC        | Natural Gas |
| Freestone Energy 1c     | 244                 | CC        | Natural Gas |
| Freestone Energy 1d     | 244                 | CC        | Natural Gas |
| Frontera Project 1a     | 233                 | CC        | Natural Gas |
| Frontera Project 1b     | 233                 | CC        | Natural Gas |
| Frontier 1a             | 430                 | CC        | Natural Gas |
| Frontier 1b             | 430                 | CC        | Natural Gas |
| Gateway 1a              | 433                 | CC        | Natural Gas |
| Gateway 1b              | 433                 | CC        | Natural Gas |
| Gibbons Creek 1         | 462                 | ST        | Coal        |
| Graham 1                | 241                 | ST        | Natural Gas |
| Graham 2                | 400                 | ST        | Natural Gas |
| Granite Shoals          | 56                  | Hydro     | Hydro       |
| Greens Bayou 5          | 420                 | ST        | Natural Gas |
| Grn Bayou GT 73         | 54                  | GT        | Natural Gas |
| Grn Bayou GT 74         | 54                  | GT        | Natural Gas |
| Grn Bayou GT 81         | 54                  | GT        | Natural Gas |
| Grn Bayou GT 82         | 64                  | GT        | Natural Gas |
| Grn Bayou GT 83         | 64                  | GT        | Natural Gas |

| Generator Name          | Net Capacity (Peak) | Unit Type | Fuel Type   |
|-------------------------|---------------------|-----------|-------------|
| Grn Bayou GT 84         | 64                  | GT        | Natural Gas |
| Guadalupe 1a            | 255                 | CC        | Natural Gas |
| Guadalupe 1b            | 255                 | CC        | Natural Gas |
| Guadalupe 2a            | 255                 | CC        | Natural Gas |
| Guadalupe 2b            | 255                 | CC        | Natural Gas |
| H 4                     | 2                   | Hydro     | Hydro       |
| Н 5                     | 2                   | Hydro     | Hydro       |
| Handley 3               | 394                 | ST        | Natural Gas |
| Handley 4               | 455                 | ST        | Natural Gas |
| Handley 5               | 455                 | ST        | Natural Gas |
| Hays San Marcos 1       | 242                 | CC        | Natural Gas |
| Hays San Marcos 2       | 242                 | CC        | Natural Gas |
| Hays San Marcos 3       | 275                 | CC        | Natural Gas |
| Hays San Marcos 4       | 275                 | CC        | Natural Gas |
| Hidalgo Energy 1a       | 244                 | CC        | Natural Gas |
| Hidalgo Energy 1b       | 244                 | CC        | Natural Gas |
| Horse Hollow Wind       | 71                  | WT        | Wind        |
| Houston Chemical 1      | 80                  | CGGT      | Natural Gas |
| Indian Mesa Orion       | 7                   | WT        | Wind        |
| Ingleside Cogen 1a      | 103                 | CC        | Natural Gas |
| Ingleside Cogen 1b      | 103                 | CC        | Natural Gas |
| Inks                    | 14                  | Hydro     | Hydro       |
| J K Spruce 1            | 555                 | ST        | Coal        |
| J T Deely 1             | 415                 | ST        | Coal        |
| J T Deely 2             | 415                 | ST        | Coal        |
| Jack Energy Facility 1a | 258                 | CC        | Natural Gas |
| Jack Energy Facility 1b | 258                 | CC        | Natural Gas |
| King Mountain Wind      | 24                  | WT        | Wind        |
| Lake Creek 2            | 230                 | ST        | Natural Gas |
| Lake Hubbard 1          | 393                 | ST        | Natural Gas |
| Lake Hubbard 2          | 533                 | ST        | Natural Gas |
| Lamar Power 1a          | 245                 | CC        | Natural Gas |
| Lamar Power 1b          | 245                 | CC        | Natural Gas |
| Lamar Power 2a          | 245                 | CC        | Natural Gas |
| Lamar Power 2b          | 245                 | CC        | Natural Gas |
| Laredo 1                | 35                  | ST        | Natural Gas |
| Laredo 2                | 34                  | ST        | Natural Gas |
| Laredo 3                | 109                 | ST        | Natural Gas |
| Leon Creek 3            | 65                  | ST        | Natural Gas |
| Leon Creek Expansion 1  | 50                  | GT        | Natural Gas |
| Leon Creek Expansion 2  | 50                  | GT        | Natural Gas |
|                         |                     |           |             |

| Generator Name         | Net Capacity (Peak) | Unit Type | Fuel Type   |
|------------------------|---------------------|-----------|-------------|
| Leon Creek Expansion 3 | 50                  | GT        | Natural Gas |
| Leon Creek Expansion 4 | 50                  | GT        | Natural Gas |
| Lewisville             | 3                   | Hydro     | Hydro       |
| LG&E Gregory 1a        | 207                 | CC        | Natural Gas |
| LG&E Gregory 1b        | 207                 | CC        | Natural Gas |
| Limestone 1            | 836                 | ST        | Coal        |
| Limestone 2            | 766                 | ST        | Coal        |
| Lost Pines 1a          | 251                 | CC        | Natural Gas |
| Lost Pines 1b          | 251                 | CC        | Natural Gas |
| Lyondell Cogen 1a      | 186                 | CG        | Natural Gas |
| Lyondell Cogen 1b      | 186                 | CG        | Natural Gas |
| Lyondell Cogen 1c      | 186                 | CG        | Natural Gas |
| Magic Valley 1a        | 376                 | CC        | Natural Gas |
| Magic Valley 1b        | 376                 | CC        | Natural Gas |
| Marble Falls           | 36                  | Hydro     | Hydro       |
| Marshall Ford          | 107                 | Hydro     | Hydro       |
| Martin Lake 1          | 750                 | ST        | Coal        |
| Martin Lake 2          | 750                 | ST        | Coal        |
| Martin Lake 3          | 750                 | ST        | Coal        |
| Mesquite Wind          | 17                  | WT        | Wind        |
| Midlothian 1           | 218                 | CS        | Natural Gas |
| Midlothian 2           | 218                 | CS        | Natural Gas |
| Midlothian 3           | 218                 | CS        | Natural Gas |
| Midlothian 4           | 218                 | CS        | Natural Gas |
| Midlothian 5           | 218                 | CS        | Natural Gas |
| Midlothian 6           | 218                 | CS        | Natural Gas |
| Monticello ERCOT 1     | 565                 | ST        | Coal        |
| Monticello ERCOT 2     | 565                 | ST        | Coal        |
| Monticello ERCOT 3     | 750                 | ST        | Coal        |
| Morgan Creek 5         | 180                 | ST        | Natural Gas |
| Morgan Creek 6         | 511                 | ST        | Natural Gas |
| Morgan Creek CT1       | 70                  | GT        | Natural Gas |
| Morgan Creek CT2       | 70                  | GT        | Natural Gas |
| Morgan Creek CT3       | 70                  | GT        | Natural Gas |
| Morgan Creek CT4       | 70                  | GT        | Natural Gas |
| Morgan Creek CT5       | 70                  | GT        | Natural Gas |
| Morgan Creek CT6       | 69                  | GT        | Natural Gas |
| Morris Sheppard        | 24                  | Hydro     | Hydro       |
| Mountain Crk 6         | 120                 | ST        | Natural Gas |
| Mountain Crk 7         | 120                 | ST        | Natural Gas |
| Mountain Crk 8         | 550                 | ST        | Natural Gas |

| Generator Name        | Net Capacity (Peak) | Unit Type | Fuel Type   |
|-----------------------|---------------------|-----------|-------------|
| Newgulf 1             | 88                  | CC        | Natural Gas |
| Nolte                 | 2                   | Hydro     | Hydro       |
| North Texas 1         | 18                  | ST        | Natural Gas |
| North Texas 2         | 18                  | ST        | Natural Gas |
| North Texas 3         | 40                  | ST        | Natural Gas |
| O W Sommers 1         | 445                 | ST        | Natural Gas |
| O W Sommers 2         | 435                 | ST        | Natural Gas |
| Oklaunion 1           | 690                 | ST        | Coal        |
| Oyster Creek CC 1     | 55                  | CC        | Natural Gas |
| Panda Odessa/Ector 1a | 259                 | CC        | Natural Gas |
| Panda Odessa/Ector 1b | 259                 | CC        | Natural Gas |
| Panda Odessa/Ector 1c | 259                 | CC        | Natural Gas |
| Panda Odessa/Ector 1d | 259                 | CC        | Natural Gas |
| Pasadena CG 1         | 150                 | CG        | Natural Gas |
| Pasadena CG 2a        | 270                 | CG        | Natural Gas |
| Pasadena CG 2b        | 270                 | CG        | Natural Gas |
| Pearsall 1            | 25                  | ST        | Natural Gas |
| Pearsall 2            | 25                  | ST        | Natural Gas |
| Pearsall 3            | 25                  | ST        | Natural Gas |
| Permian B GT 1        | 72                  | GT        | Natural Gas |
| Permian B GT 2        | 72                  | GT        | Natural Gas |
| Permian B GT 3        | 72                  | GT        | Natural Gas |
| Permian B GT 4        | 69                  | GT        | Natural Gas |
| Permian B GT 5        | 69                  | GT        | Natural Gas |
| Permian Basin 5       | 115                 | ST        | Natural Gas |
| Permian Basin 6       | 545                 | ST        | Natural Gas |
| PH Robinson 2         | 461                 | ST        | Natural Gas |
| Post Wind Farm        | 7                   | WT        | Wind        |
| Powerlane GRNV 1      | 20                  | ST        | Natural Gas |
| Powerlane GRNV 2      | 27                  | ST        | Natural Gas |
| Powerlane GRNV 3      | 42                  | ST        | Natural Gas |
| R W Miller 1          | 75                  | ST        | Natural Gas |
| R W Miller 2          | 120                 | ST        | Natural Gas |
| R W Miller 3          | 208                 | ST        | Natural Gas |
| R W Miller GT 4       | 104                 | ST        | Natural Gas |
| R W Miller GT 5       | 104                 | ST        | Natural Gas |
| Ray Olinger 1         | 80                  | ST        | Natural Gas |
| Ray Olinger 2         | 110                 | ST        | Natural Gas |
| Ray Olinger 3         | 150                 | ST        | Natural Gas |
| Ray Olinger GT 4      | 76                  | ST        | Natural Gas |
| Ray Roberts           | 1                   | Hydro     | Hydro       |

| Generator Name    | Net Capacity (Peak) | Unit Type | Fuel Type   |
|-------------------|---------------------|-----------|-------------|
| Rayburn CC 1a     | 67                  | CC        | Natural Gas |
| Rayburn CC 1b     | 67                  | CC        | Natural Gas |
| Rayburn CC 1c     | 67                  | CC        | Natural Gas |
| Reliant Baytown   | 5                   | IC        | Biomass     |
| Rio Nogales 1a    | 258                 | CC        | Natural Gas |
| Rio Nogales 1b    | 258                 | CC        | Natural Gas |
| Rio Nogales 1c    | 258                 | CC        | Natural Gas |
| Sam Bertron 1     | 174                 | ST        | Natural Gas |
| Sam Bertron 2     | 174                 | ST        | Natural Gas |
| Sam Bertron 3     | 230                 | ST        | Natural Gas |
| Sam Bertron 4     | 230                 | ST        | Natural Gas |
| Sam Bertron GT 1  | 23                  | GT        | Natural Gas |
| Sam Bertron GT 2  | 13                  | GT        | Natural Gas |
| Sam Rayburn 3     | 25                  | ST        | Natural Gas |
| Sam Rayburn GT 1  | 11                  | GT        | Natural Gas |
| Sam Rayburn GT 2  | 12                  | GT        | Natural Gas |
| San Jacinto SES 1 | 81                  | CGGT      | Natural Gas |
| San Jacinto SES 2 | 81                  | CGGT      | Natural Gas |
| San Miguel 1      | 391                 | ST        | Coal        |
| Sand Hill CC 5a   | 275                 | CC        | Natural Gas |
| Sand Hill GT 1    | 47                  | GT        | Natural Gas |
| Sand Hill GT 2    | 47                  | GT        | Natural Gas |
| Sand Hill GT 3    | 47                  | GT        | Natural Gas |
| Sand Hill GT 4    | 47                  | GT        | Natural Gas |
| Sandow 4          | 555                 | ST        | Coal        |
| Security          | 4                   | IC        | Biomass     |
| Silas Ray 10      | 45                  | GT        | Natural Gas |
| Silas Ray 69      | 62                  | CC        | Natural Gas |
| Silverstar 1      | 5                   | WT        | Wind        |
| Sim Gideon 1      | 140                 | ST        | Natural Gas |
| Sim Gideon 2      | 140                 | ST        | Natural Gas |
| Sim Gideon 3      | 340                 | ST        | Natural Gas |
| South Texas 1     | 1280                | NP        | Uranium     |
| South Texas 2     | 1280                | NP        | Uranium     |
| Southwest Mesa 1  | 7                   | WT        | Wind        |
| Spencer 4         | 60                  | ST        | Natural Gas |
| Spencer 5         | 66                  | ST        | Natural Gas |
| Stryker Crk 1     | 176                 | ST        | Natural Gas |
| Stryker Crk 2     | 517                 | ST        | Natural Gas |
| Sweeny 1          | 88                  | CGGT      | Natural Gas |
| Sweeny 2          | 90                  | CGGT      | Natural Gas |
|                   |                     |           |             |

| Generator Name        | Net Capacity (Peak) | Unit Type | Fuel Type   |
|-----------------------|---------------------|-----------|-------------|
| Sweeny 3              | 90                  | CGGT      | Natural Gas |
| Sweeny 4              | 90                  | CGGT      | Natural Gas |
| Sweetwater 1a         | 132                 | CC        | Natural Gas |
| Sweetwater 1b         | 125                 | CC        | Natural Gas |
| Sweetwater Wind       | 23                  | WT        | Wind        |
| T H Wharton CC 3a     | 166                 | CC        | Natural Gas |
| T H Wharton CC 3b     | 166                 | CC        | Natural Gas |
| T H Wharton CC 4a     | 166                 | CC        | Natural Gas |
| T H Wharton CC 4b     | 166                 | CC        | Natural Gas |
| T H Wharton GT 51     | 58                  | GT        | Natural Gas |
| T H Wharton GT 52     | 58                  | GT        | Natural Gas |
| T H Wharton GT 53     | 58                  | GT        | Natural Gas |
| T H Wharton GT 54     | 58                  | GT        | Natural Gas |
| T H Wharton GT 55     | 58                  | GT        | Natural Gas |
| T H Wharton GT 56     | 58                  | GT        | Natural Gas |
| Tenaska Lamar III 1a  | 117                 | CC        | Natural Gas |
| Tenaska Lamar III 1b  | 117                 | CC        | Natural Gas |
| Tessman Road          | 6                   | GT        | Biomass     |
| Texas City Calpine 1a | 223                 | CG        | Natural Gas |
| Texas City Calpine 1b | 223                 | CG        | Natural Gas |
| Texas City Green 2 1a | 227                 | CG        | Natural Gas |
| Texas City Green 2 1b | 227                 | CG        | Natural Gas |
| Thomas C Ferguson 1   | 420                 | ST        | Natural Gas |
| TP 4                  | 2                   | Hydro     | Hydro       |
| Tradinghouse Crk 1    | 565                 | ST        | Natural Gas |
| Tradinghouse Crk 2    | 810                 | ST        | Natural Gas |
| Trent Mesa Wind       | 13                  | WT        | Wind        |
| Trinidad 6            | 237                 | ST        | Natural Gas |
| Twin Oaks Power 1     | 171                 | ST        | Coal        |
| Twin Oaks Power 2     | 172                 | ST        | Coal        |
| TX Wind Power 1       | 4                   | WT        | Wind        |
| V H Braunig 1         | 225                 | ST        | Natural Gas |
| V H Braunig 2         | 240                 | ST        | Natural Gas |
| V H Braunig 3         | 400                 | ST        | Natural Gas |
| Valley ERCOT 1        | 177                 | ST        | Natural Gas |
| Valley ERCOT 2        | 554                 | ST        | Natural Gas |
| Valley ERCOT 3        | 390                 | ST        | Natural Gas |
| Village Creek 1a      | 4                   | CG        | Natural Gas |
| W A Parish 1          | 174                 | ST        | Natural Gas |
| W A Parish 2          | 174                 | ST        | Natural Gas |
| W A Parish 3          | 278                 | ST        | Natural Gas |

| Generator Name                             | Net Capacity (Peak) | Unit Type | Fuel Type   |
|--------------------------------------------|---------------------|-----------|-------------|
| W A Parish 4                               | 552                 | ST        | Natural Gas |
| W A Parish 5                               | 690                 | ST        | Coal        |
| W A Parish 6                               | 650                 | ST        | Coal        |
| W A Parish 7                               | 560                 | ST        | Coal        |
| W A Parish 8                               | 595                 | ST        | Coal        |
| W A Parish GT 1                            | 13                  | GT        | Natural Gas |
| W B Tuttle 1                               | 65                  | ST        | Natural Gas |
| W B Tuttle 3                               | 100                 | ST        | Natural Gas |
| W B Tuttle 4                               | 160                 | ST        | Natural Gas |
| Whitney (TX)                               | 30                  | Hydro     | Hydro       |
| WichitaFalls IPP 1a                        | 39                  | CC        | Natural Gas |
| WichitaFalls IPP 1b                        | 39                  | CC        | Natural Gas |
| Wise County 1a                             | 350                 | CC        | Natural Gas |
| Wise County 1b                             | 350                 | CC        | Natural Gas |
| Woodward Mountain I                        | 7                   | WT        | Wind        |
| Woodward Mountain II                       | 7                   | WT        | Wind        |
| Total Installed Capacity (MW) <sup>9</sup> | 70,824              |           |             |

<sup>&</sup>lt;sup>9</sup> Wind capacity is counted at 8.7 percent of installed capacity.