Energy storage for the grid

Jeremy P. Meyers Assistant Professor, Mechanical Engineering

University of Texas at Austin

Types of grid storage

A. Price, "Electrical energy storage—a review of technology options,"Proceedings of ICE Civil Engineering 158 November 2005 Pages 52–58 Paper 14175

Energy storage technology estimates

source: "Bottling Electricity: Storage as a Strategic Tool for Managing Variability and Capacity Concerns in the Modern Grid." <u>http://www.oe.energy.gov/eac.htm</u>

Electrochemical energy storage

 Batteries: energy storage device all of the active material that will react is enclosed within the device

- Fuel cells: energy conversion device
 - deliver fuel to one side and oxygen (air) to the other
 - as long as fuel and air are supplied, can provide electrical power

Flow batteries

 allow for de-coupling of power and duration of storage

Flow batteries

- Separate storage, flexible siting
- Good efficiency
- Stable electrodes (less cycling degradation)
- Expensive, need to improve kinetics

A. Shah et al., "A dynamic performance model for redox-flow batteries involving soluble species" Electrochimica Acta **53** (2008) 8087–8100

Research areas in electrochemical storage

- identifying inexpensive electrochemical couples that are highly reversible and which provide a sufficiently large cell voltage
- cheap, durable electrode materials that will provide rapid kinetics for the preferred reaction, while resisting corrosion and degradation under operating conditions
- cell designs to optimize electrode utilization and to minimize external pumping and control requirements.

Types of grid storage

A. Price, "Electrical energy storage—a review of technology options,"Proceedings of ICE Civil Engineering 158 November 2005 Pages 52–58 Paper 14175