	
	

Texas Nodal <Project Name>
Document Version: 0.23
Standard Interfaces Document
Date: 14-Mar-07
Template Name and Version: TN.PC.StandardInterfacesTemplate 1.0
ERCOT Public

[image: image1.png]
Standard Interfaces Document

Texas Nodal Enterprise Integration
External Interfaces Specification
Version 0.23
DRAFT
27-Feb-07
Document Revisions

	Date
	Version
	Description
	Author(s)

	12/19/2006
	0.10
	First draft
	Scott Neumann

	12/20/2006
	0.11
	Revised security section
	Nemat Sarnevesht

	12/21/2006
	0.13
	Augmentation to descriptions of bidding interfaces.
	Scott Neumann

	12/22/2006
	0.14
	Added sections 2.4-2.10 to discuss other aspects of web services strategy.
	Scott Neumann

	12/27/2006
	0.15
	Miscellaneous corrections and clarifications.
	Scott Neumann

	12/28/2006
	0.16
	Miscellaneous changes to reflect internal review
	Scott Neumann

	01/10/2007
	0.17
	Miscellaneous changes to reflect internal review. Provided additional bid types.
	Scott Neumann

	1/19/2007
	0.18
	Changes to reflect additional interfaces
	Scott Neumann

	1/22/2007
	0.19
	Correction to XML example to reflect schema changes.
	Scott Neumann

	2/9/2007
	0.20
	Updates to reflect initial TPTF comments, addition of Bid IDs, addition of more interfaces and resolution of issues.
	Scott Neumann

	2/16/2007
	0.21
	Defined additional interfaces. Clarifications on data types.
	Scott Neumann

	2/23/2007
	0.22
	Defined additional interfaces. Changed transactionId to mrid. Added description of required elements for bidding. Revised model interfaces.
	Scott Neumann

	02/27/2007
	0.23
	Revisions to award structures. Defined additional interfaces.
	Scott Neumann

Document Approvals

	Date
	Approved By
	Approval Documented In (select)

	
	<Name>

<Role>
	___ Approval email on file

___ Signature

Table of Contents

41.
Introduction

41.1.
Purpose

41.2.
Scope

51.3.
Definitions, Acronyms, and Abbreviations

61.4.
References

71.5.
Overview

71.6.
Program-level Standards

82.
Services Organization

82.1.
Common Message Structure

82.1.1.
Message Header Structure

102.1.2.
Request Message Structures

122.1.3.
Payload Structures

132.1.4.
Response Message Structures

142.2.
Common Security Implementation

142.2.1.
Secure the Transport layer

152.2.2.
Secure SOAP messages

162.3.
Modeling and Conventions

162.3.1.
Use of the IEC CIM

162.3.2.
Use of UTC

172.3.3.
Market Products

182.3.4.
Management and Use of Transaction IDs

192.3.5.
Other Conventions

192.4.
Delivery Approach

202.5.
Technical Interoperability

212.6.
Service Level Agreements

212.7.
Auditing, Monitoring and Management

222.8.
Versioning

222.9.
Governance

232.10.
Web Service Configuration Standards

243.
Market Transaction Service

243.1.
Interfaces Provided

263.2.
Interfaces Required

273.3.
Message Specifications

303.3.1.
Three Part Offer

323.3.2.
Self Arranged Ancillary Services

343.3.3.
Incremental/Decremental Offers

353.3.4.
Ancillary Services Offer

363.3.5.
Ancillary Services Trade

373.3.6.
Capacity Trade

383.3.7.
Congestion Revenue Rights (CRR)

393.3.8.
Current Operating Plan (COP)

413.3.9.
DC Tie Schedule

423.3.10.
Energy Bid

433.3.11.
Energy Only Offer

443.3.12.
Energy Trade

463.3.13.
Output Schedule

473.3.14.
PTP Obligation

493.3.15.
Self Schedule

503.4.
Example XML Messages

554.
Market Information

554.1.
Interfaces Provided

554.2.
Interfaces Required

564.3.
Message Specifications

564.3.1.
Get AwardSet

574.3.2.
Get BidSet

604.3.3.
Forecasted Load

614.3.4.
Real-Time System Load

624.3.5.
Daily Regulation Energy

644.3.6.
Market Totals

664.3.7.
Market LMPs and SPPs

684.3.8.
Market MCPCs

694.3.9.
Binding Constraints

714.3.10.
Active Contingencies in SCED

724.3.11.
Ancilary Service Schedule Obligations

734.3.12.
Dynamic Thermal Ratings

744.3.13.
Voltage Profiles

754.3.14.
Daily Total Regulation

764.3.15.
Load Ratio Share

774.3.16.
Competitive Constraints

774.3.17.
Load Distribution Factors

784.3.18.
Shift Factors

794.3.19.
Customer Load Profile

804.3.20.
Aggregated Ancillary Service Offer Curves

804.3.21.
Ancillary Service System Plan

814.3.22.
Proxy Curves

824.3.23.
Real-Time Calculated Energy

834.3.24.
Derated CRRs

844.3.25.
Unit Availability

844.3.26.
Startup and Shutdown Instructions

865.
Notifications

865.1.
Interfaces Provided

875.2.
Interfaces Required

885.3.
Message Specifications

885.3.1.
Notices and Alerts

905.3.2.
Bid Set Acceptance

905.3.3.
Bid Set Errors

905.3.4.
Pending Trade

905.3.5.
Energy Offer Awards

915.3.6.
Energy Only Offer Awards

925.3.7.
Energy Bid Award

935.3.8.
Ancillary Service Awards

945.3.9.
CRR Awards

955.3.10.
PTP Obligation Awards

976.
Acknowledgement of Alerts

976.1.
Interfaces Provided

976.2.
Interfaces Required

986.3.
Message Specifications

997.
Model Submission Interfaces

997.1.
Interfaces Provided

997.2.
Interfaces Required

997.3.
Message Specifications

997.3.1.
Model Access

1007.3.2.
Get Project Status

1017.3.3.
Get Project Details

1027.3.4.
NOMCR Submission

1047.3.5.
PMCR Submission

1057.3.6.
SAMR Submission

1088.
Outage Scheduling Interfaces

1088.1.
Interfaces Provided

1088.2.
Interfaces Required

1088.3.
Message Specifications

1088.3.1.
Outage Creation

1088.3.2.
Outage Query

1088.3.3.
Outage Cancellation

109Appendix A: WS-Notifications

115Appendix B: WSDL for Market Requests

117Appendix C: XML Schemas for Message and Payload Definitions

134Appendix E: Annotated SOAP Message

138Appendix F: Issues

1. Introduction

This document describes how to develop machine to machine interfaces for Market Participant applications that need to interact with ERCOT Nodal Market systems. The intended audience of this document are developers that will be integrating Market Participant applications to the ERCOT Nodal systems through the use of the interfaces described within this specification.

Where sections 1 and 2 of this document apply to all interfaces, sections 3-6 describe specific groupings of interfaces. The appendices provide XML Schemas, WSDLs and additional examples. Where the intitial release of this document provides several example interfaces related to market bidding, in future releases all sections will be extended to describe a broader set of interfaces.

The interfaces and related interactions described by this document define the externally-visible (black box view) perspective of the services provided by this project. It is the intent of this specification and interface architecture to shield Market Participants from the details of systems integration internal to ERCOT.
This document should be viewed as a draft, with subsequent revisions to be provided. Information contained within this draft is subject to change.

1.1. Purpose

The interfaces described by this document are intended to be used by Market Participants for machine to machine integration. This document is intended to provide all the details required to build a machine to machine interface.
1.2. Scope

The scope of this document is to describe web services provided for integration by Market Participants from the perspective of external integration. This document has program level scope as related to web services that would be used by Market Participants for machine to machine interaction with nodal applications as detailed in an agreed list of interfaces to be managed by the Nodal project. The intent of this design is to leverage the integration layer (IL) to expose web services needed for external integration by Market Participants.
The following are specifically outside the scope of this document:

Note: which system will handle the market interfaces for settlement purpose (determinants, charges, statements etc.)?
· The details of integration from the IL to specific applications (e.g. MMS, EMS) is outside the scope of this specification and will be described in subsequent design documents.
· Inter-Control Center Communications Protocol (ICCP) communications

· Interactions with User Interfaces (UI)

This document is not intended as a replacement for the web services provided by PR50024.
The specific list of interfaces to be included within the scope of this specification is currently in a draft under review.
1.3. Definitions, Acronyms, and Abbreviations

	Term/Acronym
	Definition

	ADJ
	Adjustment

	AS
	Ancillary Services, includes spinning reserve, non-spinning reserve, responsive reserve and regulation

	bid
	The term bid in this document is used for bids, offers and trades

	BidSet
	A BidSet is a container for a collection of bids, offers, trades and schedules

	CIM
	Common Information Model, an IEC standard

	CRR
	Congestion Revenue Rights, a system implemented at ERCOT by Nexant that is responsible for CRR auctions

	CSV
	A file format that uses values separated by commas

	DAM
	Day Ahead Market

	DRUC
	Day-Ahead Reliability Unit Commitment

	EMS
	Energy Management System, a system implemented at ERCOT by Areva

	FIP
	Fuel Index Price

	FOP
	Fuel Oil Price

	FTP
	File Transfer Protocol

	HASL
	High ancillary services limit

	HDL
	High dispatch limit

	HEL
	High emergency limit

	HRUC
	Hour-ahead Reliability unit commitment

	HSL
	High sustained limit

	IEC
	International Electrotechnical Commission

	LASL
	Low ancillary services limit

	LDL
	Low dispatch limit

	LEL
	Low emergency limit

	LMP
	Location marginal price

	LSL
	Low sustained limit

	MCPC
	Market clearing price for capacity

	MIS
	Market Information System, an umbrella for the various interfaces provided to Market Participants by ERCOT

	MMS
	Market Management System, a system implemented at ERCOT by ABB

	MP
	Market Participant

	MW
	Megawatt, a measure of power

	MWh
	Megawatt hour, a measure of energy

	Non-Spin
	Non-spinning reserve service

	NSRS
	Non-spinning reserve service

	OASIS
	Organization for the Advancement of Structured Information Systems

	Operating Date
	Synonymous with Trade Date

	POC
	Proof Of Concept

	QSE
	Qualified Scheduling Entity

	Reg-Down
	Regulation down

	Reg-Up
	Regulation up

	RRS
	Responsive reserve

	RTM
	Real-Time Market

	sink
	Sink settlement point

	SOAP
	Simple Object Access Protocol

	SoSA
	System of Systems Architecture

	source
	Within a bid or award this refers to the source settlement point. Within a message header, this refers to the ID of the market participant.

	SP
	Settlement Point

	SPP
	Settlement Point Price

	TP
	Transmission Provider

	Trade Date
	Synonymous with Operating Date

	WS
	Web Services. There are many web service standards that are commonly prefixed by ‘WS’.

	WSDL
	Web Services Definition Language

	XML
	eXtensible Markup Language

	XSD
	XML Schema, used to define the structure of XML documents

	Z
	Zulu, an indicator for the use of GMT or UTC time

1.4. References

	Artifact
	Definition

	External Interfaces Conceptual Design
	Conceptual design for external interfaces using web services

	External Interfaces Security Design Specification
	Detailed security design for external interfaces. This is a companion document to the External Interfaces Conceptual design.

	OASIS WS-Notifications
	OASIS Web Services Base Notification standard

	OASIS WS-Security
	OASIS Web Services Security

1.5. Overview

This document focuses on the external interface design and related interface definitions from all perspectives except for security, which is described in detail in a companion document. The interfaces are to be provided using web services, where a rationale is provided in subsequent sections. The web services defined by this document will support a wide variety of machine to machine information exchanges.

1.6. Program-level Standards

In general, this design described by this document will leverage web services and related security standards as defined by the World-Wide Web Consortium (W3C) and OASIS. Program-level standards include those related to security. These are described in the companion security design document.

Another key program standard is the IEC Common Information Model (CIM), as defined by IEC 61970-301. This is used to define models used by ERCOT. It will also be leveraged by this design for the definition of messages used for interfaces. There is also a standard for message structures defined by IEC 61968-1.

The OASIS WS-BaseNotifications standard is used to define the mechanism for issuance of asynchronous notification messages to Market Participants. Given the application of WS-Notifications for Nodal, only a subset of the capabilities of WS-Notifications are required.
The definition of timestamps is specified by ISO-8601, with the exception that timestamps of 24:00:00 are not used for compatibility reasons.
2. Services Organization

The services described by this document are defined using a combination of Web Services Definition Language (WSDL) and XML Schema. The WSDLs are organized as follows:

· One or more WSDLs defined by ERCOT, defining operations related to synchronous request/reply web service messages

· WSDL defined by OASIS for WS-Notifications to provide support for asynchronous messaging, using web services

In both of the above cases, one or more XML Schemas (XSD) are used to define the structure of message payloads.

Example WSDL and XSD are provided in the appendices. It is anticipated that these would be key design artifacts for developers.

2.1. Common Message Structure

Unless otherwise specified, all messages use a common message envelope, where a predefined structure is used for requests and another structure is used for responses. This structure is based upon the IEC 61968-1 standard. Messages are constructed with several sections, including:

· Header: required for all messages, using a common structure for all service interfaces

· Request: optional, defining parameters needed to qualify request messages

· Reply: Used for response messages to indicate success, failure and error details

· Payload: optional, used to convey message information as a consequence of the ‘verb’ and ‘noun’ in the message Header. The payload structure provides options for payload compression.

2.1.1. Message Header Structure

Common to both the request and response messages is a header structure. The header has several required fields that must be populated, these include:

· Verb, to identify a specific action to be taken. There are an enumerated set of valid verbs, where commonly used values include ‘get’, ‘create’, ‘update’, ‘cancel’, ‘close’ and ‘reply’.

· Noun: to identify the subject of the action and/or the type of the payload (e.g. BidSet, Notification) if a payload is provided.
· Source: identifying the source of the message, which should be the ID of the Market Participant or ERCOT (typically for reply messages)

· Revision: To indicate the revision of the message definition. This should be ‘1’ by default.

· Nonce: A unique number that would not be repeated by the Market Participant within the period of at least a day. This could be a sequence number, large random number or a GUID. This is defined by WS-Security. A combination of this number and the timestamp make the message unique for a given time period.

· Created: A timestamp to indicate when the message was created. This value and the Nonce are used to protect against replay attacks. This is defined by WS-Security.

The following diagram describes the header structure used for request and response messages.

[image: image2.png]
There are several optional fields that may be populated. If the MessageID is populated on a request, it will be returned on the reply. The Comment field is never used for any processing-related logic. The UserID may be used to indicate the person responsible for initiating a transaction, and will be logged as appropriate, but verification is the responsibility of the Source system.
2.1.2. Request Message Structures

The following diagram describes the structure of a request message that would be used in conjunction with a WSDL operation.

[image: image3.png]
The RequestMessage can also optionally contain a package with parameters relevant to the request, called Request. It is likely that different or variant Request packages can be defined to be used in conjunction with messages for a specific web service operation. The following is an example RequestType used in the definition of a Request package that defines some common parameters used for requests, however it is important to note that these are typically application specific. These parameters are most commonly used in conjunction with ‘get’ requests as qualifiers.
[image: image4.png]
One key use of the RequestType is to avoid the placement of application specific request parameters in the header or within payload definitions. Also, where a set of requests that were supported by a specific web service operation had significantly different requirements for information in the RequestType, it could justify the use of RequestType variants, were each variant was used for the definition of messages for the specific web service operation.

2.1.3. Payload Structures

There are some requests where a Payload must be provided, as would be the case for a message with a verb of ‘create’ or ‘update’. Payloads are typically XML documents that conform to a defined XML schema. However, there are exceptions to this rule. Some XML payloads may not have useful XML schemas, as in the case of RDF files or dynamic query results, as well as non-XML formats such as CSV and PDF. There may also be cases where a large payload must be compressed, in the event that it would become very large and otherwise consume significant network bandwidth. In order to accommodate a variety of payload format options the following payload structure is used.

[image: image5.jpg]
In the previous diagram, any type of XML document may be included, using the XML ‘any’ structure. While this provides options for loose-coupling, specific complex types defined by XML schemas (XSDs) can be used as well. The WSDL in the appendix provides an example of this case.

Payloads can also be supplied as XML encoded strings using the ‘Document’ tag, although this method is less preferred than used of the XML ‘any’.

There are also some cases where a zipped, base64 encoded string is necessary, and would be passed using the ‘Compressed’ tag. The Gnu Zip compression shall be used in order to provide compatibility within both Java and Microsoft .Net implementations. Specific examples of the usage of payload compression would be where:

1. An XML payload, conforming to a recognized XML schema exceeds a predefined size (e.g. 1MB). This would be very common for large Market Participant sets of bids.

2. A payload has a non-XML format, such as PDF, Excel spreadsheet, CSV file or binary image

3. A payload is XML, but has no XML schema and exceeds a predefined size, as would be the case of a dynamic query that would return an XML result set

The format tag can be used to identify specific data formats, such as XML, RDF, PDF, DOC, CSV, etc. This is especially useful if the payload is compressed.

The above options provide an alternative to the use of SOAP attachments. SOAP attachments are more difficult to secure since the SOAP envelope signature signs the SOAP body but does not sign the attachment. This also requires that the payload is processed separately from the rest of the SOAP message (e.g. the message is parsed to extract the payload, and then the payload is parsed and processed). However, we believe this implementation approach is less complex than using SOAP attachments.

2.1.4. Response Message Structures

The following diagram describes the structure of a response message that would be used in conjunction with a WSDL operation, as a response to the request message.

[image: image6.png]
The ReplyCode would be set to OK to indicate that the request was successful, otherwise it would be set to ERROR, and one or more Error elements would be provided to describe the error(s). There may also be more specific error information provided within the payload, as in the case of bids within a BidSet container.
If the MessageID was set in the Header for the RequestMessage, the value will be returned in the Header of the ResponseMessage.
2.2. Common Security Implementation

This section will provide an overview of security from the perspective of implementation requirements for Market Participants. Market Participants MUST take two basic steps in securing their Web Services Interaction with ERCOT:

1. Secure the Transport layer

2. Secure SOAP messages
2.2.1. Secure the Transport layer

The transport layer is secured by deploying Secure Socket Layer (SSL) and Transport Layer Security (TLS) following these steps:

1. Obtain client side certificate (these Certificates are issued by Verisign under the ERCOT brand).

2. Implement mutual authentication (explained below).

3. Ensure minimum SSL/TLS security settings

Note that TLS is an enhanced specification based on SSL. References to SSL refer to both SSL and TLS.

SSL is a standard mechanism for Web services that is available on virtually all application servers. This widely used, mature technology, which secures the communication channel between client and server, will satisfy all of ERCOT’s use cases for secure Web Service communications. Since it works at the transport layer, SSL covers all information passed in the channel as part of a message exchange between a client and a server, including attachments. Authentication is an important aspect of establishing an HTTPS connection. Many platforms support the following authentication mechanisms for Web Services using HTTPS:

· The server authenticates itself to clients with SSL and makes its certificate available.

· The client uses basic authentication over an SSL channel.

· Mutual authentication with SSL, using the server certificate as well as the client certificate, so that both parties can authenticate to each other.

With Web Services, the interaction use case is usually machine to machine; that is, it is an interaction between two application components with no human involvement. Machine-to-machine interactions have a different trust model from typical website interactions. In a machine-to-machine interaction, trust must be established proactively, since there can be no real-time interaction with a user about whether to trust a certificate. Ordinarily, when a user interacts with a website via a browser and the browser does not have the certificate for the site, the user is prompted about whether to trust the certificate. The user can accept or reject the certificate at that moment. With Web Services, the individuals involved in the deployment of the Web Service interaction must distribute and exchange the server certificate, and the client certificate (for mutual authentication), prior to the interaction occurrence.

The combination of the two settings—CONFIDENTIAL for transport guarantee and CLIENT-CERT for auth-method—enables mutual authentication. When set to these values, the containers for the client and the target service both provide digital certificates sufficient to authenticate each other. (These digital certificates contain client-specific identifying information.)

2.2.2. Secure SOAP messages

Besides creating a secure communication channel between a client and a Web Service, ERCOT Web Service message exchanges require that security information be embedded within the SOAP message itself. This is often the case when a message needs to be processed by several intermediary nodes before it reaches the target service or when a message must be passed among several services to be processed.

Message-level security is very useful in XML document-centric applications, since different sections of the XML document may have different security requirements or be intended for different users.

SOAP messages’ signing is done through the following:

· Obtain application/system signing certificate. (These certificates are issued by Verisign under the ERCOT brand).

· Sign all SOAP messages, using Web Services Security Standards and its X.509 Certificate Token Profile (see J2EE and .NET code snippets in Appendix D)

· Message headers MUST include a timestamp and a nonce

· Validate all SOAP messages have:

· Signature

· Certificates

· Revocation status of certificates

· Use of timestamp and nonce (to prevent replay attacks)

Appendix D provides examples for the generation of signatures. Appendix E provides an annotated example of a SOAP message.

2.3. Modeling and Conventions

There are several conventions that are used for definitions, data items and information models. Note that additional values and conventions will be defined as market requirements are finalized.

2.3.1. Use of the IEC CIM
Where possible the IEC CIM should be leveraged. Examples of leveraging the CIM include:

· The use of data structures defined by the IEC CIM where appropriate in payload definitions

· CIM naming conventions are used wherever possible, e.g. ClassName, propertyName
· The properties ‘startTime’ and ‘endTime’ are typically used to identify time intervals, as they are also used within many CIM classes. Instead of using combinations of start date, start hour and potentially an interval number (e.g. to represent 15 minute intervals), absolute times should be specified.
· The property ‘mrid’ is used to uniquely identify objects such as bids, offers, trades, awards and schedules
· A trade or operating date is always derived from the startTime of a bid, offer, trade or schedule.

Where interfaces have references to resources, QSEs, settlement points and electrical buses, the ‘name’ property is used for the reference, as opposed to ‘mrid’. This is to maximize legibility and to provide for consistency with underlying market applications. Consequentially, simplified XML is used, where the used of the ‘name’ property is implied as opposed to explicit use of a <name> tag.
2.3.2. Use of UTC

The use of Universal Coordinated Time (UTC) as defined by ISO 8601 for time values that are conveyed through interfaces. This avoids issues related to time zones and daylight savings time changes. The date and time format is ‘YYYY-MM-DDThh:mm:ssZ’, where the appended ‘Z’ indicates Zulu (i.e. use of UTC or GMT) and the ‘T’ is used to separate the date from the time. For example, from a Central Standard Time perspective, startTime and endTime values of 2008-01-01T06:00:00Z and 2008-01-02T06:00:00Z would delineate a specific operating day with a date of 2008-01-01.
It is extremely important to note that the use of UTC within message definitions for the external interfaces defined by this document in no way constrains or requires the use of UTC for representations of time that may include:

· User interfaces, where local time or market hours may be used as desired

· Reports, where reports would be generated using an appropriate local time

· Internal integration, where an application may internally require some other time structure

In some cases it may be desirable to convert between UTC and a local time or a market hour. This can be readily accomplished using software functions or XPath expressions.

Independent of the use of UTC, it may be important for processing to determine if the day has 23, 24 or 25 hours. In a 25 hour day, the start and end times for a market day could be seen as 2008-10-27T05:00:00Z and 2008-10-28T06:00:00Z, respectively. In a 23 hour day, the start and end times for a market day could be seen as 2008-04-03T06:00:00Z and 2008-04-04T05:00:00Z, respectively.

One exception to ISO-8601 to be taken for compatibility reasons is to not allow the use of a 24:00:00 timestamp to indicate the end of a day. For example, for a day beginning at 2008-01-01T00:00:00Z, an end time of 2008-01-02T00:00:00Z should be used (instead of 2008-01-01T24:00:00Z, which is legal in ISO-8601). This is due to limitations in some software applications.
2.3.3. Market Products
The bidding interfaces described in this document use a number of different market products, as well as several types of schedules. The following table identifies each product or schedule type, along with the set of values (aside from the ID of the submitting QSE and the operating date) that are used to distinctly identify a bid, trade, offer or schedule.
	Product or Schedule Type
	resource
	asType
	sp
	tradeId
	bidId
	crrId
	source
	sink
	buyer
	seller
	expiration
	NERC tag

	ASOffer
	X
	X
	
	
	
	
	
	
	
	
	opt
	

	ASTrade
	
	X
	
	opt
	
	
	
	
	X
	X
	
	

	CapacityTrade
	
	
	
	opt
	
	
	
	
	X
	X
	
	

	COP
	X
	
	
	
	
	
	
	
	
	
	
	

	CRR
	
	
	
	
	
	X
	X
	X
	
	
	
	

	DCTieSchedule
	
	
	X
	
	
	
	
	
	X
	X
	
	X

	EnergyBid
	
	
	X
	
	X
	
	
	
	
	
	opt
	

	EnergyOnlyOffer
	
	
	X
	
	X
	
	
	
	
	
	opt
	

	EnergyTrade
	
	
	X
	opt
	
	
	
	
	X
	X
	
	

	IncDecOffer
	X
	
	
	
	
	
	
	
	
	
	opt
	

	OutputSchedule
	X
	
	
	
	
	
	
	
	
	
	
	

	PTPObligation
	
	
	
	
	X
	
	X
	X
	
	
	
	

	SelfArrangedAS
	
	X
	
	
	
	
	
	
	
	
	
	

	SelfSchedule
	
	
	
	
	
	
	X
	X
	
	
	
	

	ThreePartOffer
	X
	
	
	
	
	
	
	
	
	
	opt
	

The items marked with an ‘X’ are required key values needed for submission. The use of ‘tradeId’s and ‘expiration’ times are optional. The operating date for each bid, trade, offer or schedule is derived from the startTime provided by the bid, offer, trade or schedule.
The XML schema provided to describe product types has all fields optional. This is because the schemas can be used for create, get and cancel operations, where only the ID is required for a get or cancel.
2.3.4. Management and Use of Transaction IDs

In order to uniquely identify a bid, offer or trade, a unique ID is allocated by ERCOT. This transaction ID is returned immediately in response to the submission of a bid set. This transaction ID may be used for the following purposes:

· To query the status of a specific transaction
· To cancel a specific transaction
· To update a specific transaction
· To relate an award to a bid

A transaction ID is a string that takes the following form:

<MP ID>.<date>.<type>.<unique>

Within this, the following substrings are defined:

· MP ID: ID of the market participant

· Date in format YYYYMMDD

· Type, e.g. COP for Current Operating Plan

· Unique value, where the value only needs to be unique for a given market participant on a given day

Examples of transaction ID are as follows:

TXU.20081112.COP.267

REL.20081112.TPO.6535

When referring to a specific hour of a bid, the hour may be appended to the transaction ID, resulting in an ID of the following form:

<MP ID>.<date>.<type>.<unique>.<hour>

Examples of transaction ID as would be used for hourly awards are as follows:

REL.20081112.TPO.6535.1

REL.20081112.TPO.6535.2

REL.20081112.TPO.6535.3

REL.20081112.TPO.6535.4
Within the definitions of bids, trades, offers and awards, the transaction ID is conveyed using the ‘mrid’ property. This is for consistency with the IEC CIM. The following table describes the abbreviations used for each product type.
	Product or Schedule Type
	Abbreviation

	ASOffer
	ASO

	ASTrade
	AST

	CapacityTrade
	CT

	COP
	COP

	CRR
	CRR

	DCTieSchedule
	DCT

	EnergyBid
	EB

	EnergyOnlyOffer
	EOO

	EnergyTrade
	ET

	IncDecOffer
	IDO

	OutputSchedule
	OS

	PTPObligation
	PTP

	SelfArrangedAS
	SAA

	SelfSchedule
	SS

	ThreePartOffer
	TPO

2.3.5. Other Conventions

The following are other conventions that should be followed:

· Within XML definitions, tags should be namespace qualified. For example, a tag of <tag> should be prefixed by a specific namespace reference, e.g. <ns:tag>. This will help to eliminate ambiguity.

· Units for power quantities are in megawatts (MW).
· Units for energy quantities are in megawatt-hours (MWh).
· Units for energy prices are in $/MWh.
· Valid market types include: DAM, DRUC, HRUC, SCED, SASM, CRR and ADJ. Note that these are not currently required by bidding interfaces
· Trading dates are specified using YYYY-MM-DD, which indicates the operating day
· Valid ancillary service types offered as products include: REG_UP, REG_DOWN, NSPIN, RRS

2.4. Delivery Approach

In advance of a Nodal go live and in accordance with agreed schedule and dependencies, ERCOT will provide the following:

· Interface specifications for web services

· Design artifacts, including XML schemas and WSDLs

· Source code examples for web service clients
· A sand box environment for testing the interactions between the Market Participants and ERCOT. This environment will eventually be used for qualification of QSEs.

The interface specifications, artifacts and implementation of the sand box environment will be staged. An iterative implementation approach will be used, where feedback from each stage will be used to plan subsequent stages.

2.5. Technical Interoperability

There are several strategies that are being employed in order to achieve technical interoperability. These include:

· Use of open standards

· API subgroup allows input from Market Participants on interoperability issues

· The early deployment of a sandbox environment that enables ERCOT to work with the Market Participants to insure interoperability issues are addressed prior to market trials

· Providing sample Java and .Net web service client code

· Deployment of interfaces via the sandbox environment for early testing by Market Participants, so that feedback can be provided to ERCOT

Open standards are a key part of the strategy to achieve technical interoperability. Standards of particular interest include:
· W3C standards

· OASIS WS-* standards

· IEC Common Information Model and related standards (e.g. IEC 61968-1)

It is very important that the implementation of Web Service interfaces not be dependent upon any proprietary, third party products. Another key requirement is that implementation of web service clients must be possible using both Java and .Net development tools.

More details on technical interoperability will be provided as a consequence of existing web services provided by ERCOT, detailed design and experience with the Sand Box environment.

2.6. Service Level Agreements

Different categories of Web Services will have different service level agreements (SLAs). The SLAs for some Web Services are directly impacted by the variability in the amount of data that can be transferred (e.g. large bid sets).

The response time periods specified for each interface covered by an SLA typically will vary to some degree, based upon factors such as network and system loading. Consequentially, each SLA will be stated that in a manner such that each SLA will be honored Z% of the time.

The following are example SLA specifications for categories of Web Services. However, more specific SLAs will be identified for specific interfaces as required.

Web Services for bidding:

· Must be over X% available for a given trading day
· Validation of bid sets will be processed within M1 minutes after the bid set is initially submitted or updated
· Bid set inquiries will be processed within S1 seconds, with an additional S2 seconds per bid
Web services for obtaining real-time market information and providing acknowledgments and confirmations:

· Must be over X% available

· Requests involving less than 10KB data should be processed within S3 seconds, unless otherwise specified for a specific interface
Web services for other than real time transactions and information requests:

· Must be over Y% available

· Requests involving less than 10KB data should be processed within S4 seconds, unless otherwise specified for a specific interface

Notification interfaces, where the SLA obligations are also on the Market Participant as well as ERCOT:

· ERCOT will post notifications to a Market Participant within S5 seconds of the time of internal posting

· Notification service interface provided by Market Participant should be minimally Y% available. Any ‘downtime’ or periods of inaccessibility will directly impact the timeliness of notifications (e.g. validation of bid sets, alerts, etc.) from ERCOT.

Note: These values and additional SLAs will be finalized once the vendor requirements are complete.

2.7. Auditing, Monitoring and Management

ERCOT will perform auditing, monitoring and management for Web Services described by this specification using common services. Internal auditing by ERCOT will be used to track and insure that SLAs are met by ERCOT. All Web Service requests will be logged by ERCOT in order to permit calculations related to SLAs. The signatures supplied on SOAP messages will be recorded with transactions as a means of non-repudiation of each transaction.

It is important to recognize that ERCOT is not responsible for the monitoring and management of Market Participant software and network connectivity. Therefore ERCOT cannot guarantee that notification interfaces provided by Market Participants are accessible as needed for timely delivery of notifications.

2.8. Versioning

It is important to recognize that new versions of interfaces may be provided over time, largely as a consequence of:

· Staging of initial implementation

· New requirements

· Upgrades to vendor products

Wherever possible, interfaces will be evolved through augmentation, where a newer version of an interface is compatible with a previous version of an interface. However, this will not always be possible. New versions of interfaces will be manifested by:

· Changes to WSDLs

· Changes to XML Schemas

· Changes to software implementations

New versions will be deployed within a Sand Box environment for a testing/trial period. WSDL and XML schemas namespaces will include a date reference. Messages will use the Header/Revision field to identify a specific revision - this will enable ERCOT to process multiple versions of an interface where appropriate.

A detailed versioning strategy will be developed and presented to the API Subgroup and TPTF.
2.9. Governance

The web service interfaces will be critical to the operations of both ERCOT and Market Participants. The Web Services will evolve for many reasons, especially as the needs of the market evolve. Governance policies and processes will need to be defined for the Web Service lifecycle that provide strict guidelines related to:

· Design

· Implementation

· Testing

· Deployment

· Management
A comprehensive governance strategy will need to be developed and implemented by ERCOT with input from the API Subgroup and TPTF.

2.10. Web Service Configuration Standards

ERCOT will configure its web servers with specific parameters that may be of consequence to use of Web Services by Market Participants (e.g. for security). Market Participants will also need to set up Web Services to handle notifications from ERCOT. ERCOT will define specific configuration details and parameters to be used by Market Participants.

Detailed web service configuration standards will be provided to the API Subgroup and TPTF and will be refined through detailed design and experience with the Nodal Sand Box environment.
3. Market Transaction Service

The purpose of the MarketTransaction Service is to support interfaces required for bidding. This section describes the use of web services by Market Participants as required for bidding processes that involve the submission, update and cancellation of bids, trades, offers and schedules for specific markets.
For a given market type on a given trading day, each Market Participant provides a BidSet to ERCOT that will be used at the close of the market to determine awards and obligations and to provide schedules needed for grid operations. Up until the close of the market, a Market Participant may create, update or cancel bids, trades, offers and schedules. When submitted, ERCOT will validate the submission, reporting errors to Market Participants using notification messages.
3.1. Interfaces Provided

The interfaces provide the means to create (i.e. submit), get (i.e. query) and cancel (i.e. withdraw) bids for a given market type on a given trading date. A single container class ‘BidSet’ is used to hold a set of bids within the Payload section of the message, where each of the bids or offers may be of a different type.

The following diagram shows an example message sequence, using the ‘verb’ and ‘noun’ convention. Where this section focuses on the requests made by Market Participant systems to the ERCOT Nodal Web Services, the sequence diagram also includes notification messages sent from ERCOT to Market Participant Notification services (as described in section 5).

[image: image7.jpg]
The message sequence shown involves the following steps:

1. Market participant sends a RequestMessage with an initial BidSet to ERCOT for a specific market
2. In response to step 1, ERCOT performs a simple syntax scan and typically sends a ResponseMessage with ReplyCode=OK, and with a BidSet status=SUBMITTED.

3. ERCOT validates the BidSet. This could take several minutes.

4. A notification message (using verb=updated) is sent to the notification interface provided by the Market Participant. The status of the BidSet will indicate whether it was ACCEPTED or had ERRORS. This message will not include the complete BidSet.

5. In the event of ERRORS, the Market Participant would make a request to get the current BidSet using a RequestMessage with verb=get.
6. In response to step 5, any errors will be identified for each specific bid, as returned in a ResponseMessage using verb=reply. For each bid submitted, a unique transaction identifier (named ‘mrid’) will be returned.
7. A Market Participant may choose to cancel one or more bids using a RequestMessage with verb=cancel. The mrid is used for cancellation of a bid.
8. In response to step 7, a ResponseMessage is sent with verb=’reply’
9. The Market Participant may resubmit some bids (e.g. to correct errors), to update bids (e.g. change prices) and/or submit new bids, using a RequestMessage with verb=update.
10. In response to step 9, a ResponseMessage is sent with verb=’reply’
11. The newly aggregated BidSet (that includes the current set of bids consequential to steps 1, 7 and 9) is validated.

12. As in step 4, a notification message is sent to the Market Participant to indicate whether or not the BidSet was validated and accepted. The notification message uses verb=updated.
13. After the close of the market, awards and obligations are determined.

14. Market participants ate notified of specific awards and/or obligations. The notification message uses verb=’created’, noun=’AwardSet’.
The example provided does not reflect the complete processing required for confirmation or trades. This will be described in a subsequent revision.

3.2. Interfaces Required

The following table describes the parameters used in the request message (RequestMessage) for market transactions, noting that each transaction has a request and a response message. The verbs create, update, get and cancel are respectively used to submit, update, query and cancel bid sets.

	Message Element
	Value

	Header/Verb
	create/get/update/cancel

	Header/Noun
	BidSet

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Payload
	BidSet (used for create, update and cancel request messages, and may optionally be used for get requests to identify specific bids of interest)

The corresponding response messages (ResponseMessage) would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	BidSet

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	May be any number of error message if the ReplyCode is ERROR

	Payload
	BidSet (used for response to get messages) The BidSet/status value may be ACCEPTED, SUMBITTED or ERRORS

In the cases of payloads that would otherwise exceed 1 megabyte, the payloads should be zipped, base64 encoded and stored within the ‘Payload/Compressed’ tag.

For the purposes of BidSets, the verbs create and update can be used interchangeably.

3.3. Message Specifications

The following structure describes a ‘BidSet’. A BidSet is the payload type used for the submission, query and cancellation of bids and offers. A BidSet identifies the market type, trading date and Market Participant with a sequence of any number of bids and offers. The following uniquely identifies a BidSet:

· Market Participant

· Trading date

The header of a BidSet is shown in the following diagram.

[image: image8.png]
The submission (using ’create’ verb) of a BidSet by a Market participant will have the effect of either creating new bids (or offers, schedules, trades, etc.) for a given market, or overwriting existing bids that were previously submitted for a given BidSet for a given market. Additionally, bids may be submitted in partial batches of one or more bids. When this is done, new bids are aggregated with previously submitted bids and updates to previously submitted bids overwrite the previous bid.

In order to cancel a bid, a BidSet must be sent using the ‘cancel’ verb, with the specific bids to be cancelled identified within the BidSet. Cancel can only be used to cancel specific bids, not a whole BidSet for a given market.

In order to query a BidSet, A BidSet is sent using the ‘get’ verb, where the desired bids for the specific BidSet are identified. There are then two options:

1. If no bids are identified within the BidSet, all bids for the particular market will be returned in the BidSet in the response message.
2. If specific bids are identified within the BidSet, only the details of the specified bids will be returned in the BidSet in the response message.

When a BidSet is returned by a ‘get’ request for a given market, the status value (i.e. BidSet/status) in the BidSet header is populated. Values could include:

· SUBMITTED (to indicate submission, but no further processing)

· ACCEPTED (to indicate successful validation of all bids within the BidSet)

· ERRORS (to indicate that there are errors for one or more bids within the BidSet)

Note: This section will be augmented in future versions of this specification.

[image: image9.png]
The following sub sections describe the structure of specific bid, offer, trade and schedule types. Typically each bid or offer will have a set of properties that along with the type of bid, offer or schedule makes it unique. Typically these would include:

· Bid, offer, schedule or trade type

· Resource

· Ancillary Service type

When submitting a bid (offer, schedule or trade) using create or update, all properties for the bid must be specified. When performing a get or cancel request, only those parameters that uniquely identify the bid must be specified. The following diagram shows information commonly maintained for each type of bid. The status for a given bid may be SUBMITTED, ACCEPTED, ERRORS or CANCELED. If the status is ERRORS, there may be one or more error stings identified.

[image: image10.png]
The mrid is not supplied for the initial submission of a bid, but should be supplied for updates or cancellations to previously submitted bids. The marketType is currently optional and is reserved for future use.
3.3.1. Three Part Offer

The following diagram defines the structure of a three part offer that could be included within a BidSet. This is one of the more complex structures as it involves startup costs, minimum generation costs and bid price curves. The BidPriceCurve is defined by CIM directly as a subclass of CurveSchedule.

[image: image11.png]
Note: what is the “externalinternal” element used for?
The error tag is used to return one or more errors that may be the consequence of the failure of business or syntax validation rules for each type of bid or offer. The BidPriceCurve element is based upon a CIM curve. This is detailed in the following diagram:
Note: does it need the Percentages of FIP and FOP for generation above LSL?
[image: image12.png]
The following diagrams describe the structures used for startup and minimum generation costs within the ThreePartOffer message.
[image: image13.jpg]
On submission, the following items are required for a ThreePartOffer:
· startTime

· endTime

· resource ID
· ResourceStatus note: is this the COP Resource status?
· BidPriceCurve

3.3.2. Self Arranged Ancillary Services

The following diagram describes the structure of a schedule for self arranged ancillary services. The ancillary service type is identified along with a capacity schedule (derived from the CIM Irregular Interval Schedule class).

 [image: image14.png]
Within the SelfArrangedAS is a CapacitySchedule. CapacitySchedules are defined using CIM IrregularIntervalSchedules, as shown in the following diagram:

[image: image15.png]
On submission, the following items are required for a SelfArrangedAS:

· startTime

· endTime

· resource

· asType

· CapacitySchedule

The following XML is an example of a self arranged AS, showing the use of an EnergySchedule:

<SelfArrangedAS>

<startTime>2007-12-17T00:00:00Z </startTime>

<endTime>2007-12-18T00:00:00Z </endTime>

<asType>NSPIN</asType>

<CapacitySchedule>

<startTime>2007-12-17T00:00:00Z</startTime>

<value1Unit>MW</value1Unit>

<IrregularTimePoint>

<time>0</time>

<value1>120</value1>

</IrregularTimePoint>

<IrregularTimePoint>

<time>7200</time>

<value1>130</value1>

</IrregularTimePoint>

<IrregularTimePoint>

<time>28800</time>

<value1>115</value1>

</IrregularTimePoint>

</CapacitySchedule>

</SelfArrangedAS>

3.3.3. Incremental/Decremental Offers

The following diagram describes the structure of an incremental/decremental offer. This shows the details of the FipFop and BidPriceCurve structures that are contained within.

[image: image16.png]
On submission, the following items are required for an IncDecOffer:

· startTime

· endTime

· resource

· BidPriceCurve

3.3.4. Ancillary Services Offer

The following diagram describes the structure of an Ancillary Services Offer (ASOffer):

[image: image17.png]
On submission, the following items are required for an ASOffer:

· startTime

· endTime

· resource

· asType

· indicator Note: how is this indicator used for?
· BidPriceCurve Note: is this BidPriceCurve element the same as the one used by the IncDecOffer? How are the fixed or variable quantity blocks, link to 3-part offer handled?
3.3.5. Ancillary Services Trade

The following diagram describes the structure of an Ancillary Services Trade (ASTrade).

[image: image18.png]
The submission of a trade requires a matching trade to be submitted by the counterparty befor the close of the market. On submission, the following items are required for an ASTrade:

· startTime

· endTime

· resource

· asType

· buyer

· seller

· CapacitySchedule

3.3.6. Capacity Trade

The following diagram describes the structure of a Capacity Trade:
[image: image19.png]
The submission of a trade requires a matching trade to be submitted by the counterparty. On submission, the following items are required:

· startTime

· endTime

· buyer

· seller

· CapacitySchedule

3.3.7. Congestion Revenue Rights (CRR)

The following diagram describes the structure of a Congestion Revenue Rights (CRR) offer:

[image: image20.png]
On submission, the following items are required for a CRR:

· startTime

· endTime

· crrId

· source (settlement point)

· sink (settlement point)

· CapacitySchedule

· MinimumReservationPrice

In addition, the PeakLoadForecast must be specified for NOIEs.

3.3.8. Current Operating Plan (COP)

The following diagram describes the structure of a Current Operating plan (COP), where the COP provides a schedule for a resource:
[image: image21.png]
The structures for Limits and ASCapacity are shown in the following diagrams:
Note: Should “EconomicMW” be changed to “SustainedMW”,?
[image: image22.png]
[image: image23.png]
COP submissions are never cancelled, as a COP must be submitted. A resubmission of a COP overwrites the previous submission. On submission, the following items are required for a COP:

· startTime

· endTime

· resource

· ResourceStatus

3.3.9. DC Tie Schedule

The following diagram describes the structure of a DC Tie Schedule:

[image: image24.png]
On submission, the following items are required for a DCTieSchedule:

· startTime

· endTime

· buyer

· seller

· sp (settlement point)

· EnergySchedule

· NERCTags

3.3.10. Energy Bid

The following diagram describes the structure of an Energy Bid:
[image: image25.png]
On submission, the following items are required for an EnergyBid:

· startTime

· endTime

· sp (settlement point)

· bidId

· BidPriceCurve note: is this BidPriceCurve element the same as the one used by the IncDecOffer? How are the fixed or variable quantity blocks handled?
3.3.11. Energy Only Offer

The following diagram describes the structure of an EnergyOnlyOffer:
[image: image26.png]
On submission, the following items are required for an EnergyOnlyOffer:

· startTime

· endTime

· sp (settlement point)

· BidPriceCurve note: is this BidPriceCurve element the same as the one used by the IncDecOffer? How are the fixed or variable quantity blocks handled?
3.3.12. Energy Trade

The following diagram describes the structure of an Energy Trade:
[image: image27.png]
Within an EnergyTrade is an EnergySchedule. EnergySchedules are defined using CIM IrregularTimeIntervals. This is shown in the following diagram:
[image: image28.png]
In order for a trade to be accepted, both the buyer and seller must submit matching trades, as identified using the buyer, seller and tradeId tags. On submission, the following items are required for an EnergyTrade:

· startTime

· endTime

· buyer (QSE ID)

· seller (QSE ID)

· sp (settlement point name)

· EnergySchedule

3.3.13. Output Schedule

The following diagram describes the structure of an Output Schedule:
[image: image29.png]
On submission, the following items are required for an OutputSchedule:

· startTime

· endTime

· resource

· EnergySchedule

3.3.14. PTP Obligation
The following diagram describes the structure of a PTP Obligation bid:

[image: image30.png]
Within the CapacitySchedule, a CIM IrregularIntervalSchedule is used. The value1 for each IrregularTimePoint indicates the ‘quantity’ in MW.
[image: image31.jpg]
On submission, the following items are required for a PTPObligation:

· startTime

· endTime

· source (settlement point name)

· sink (settlement point name)

· bidId

· CapacitySchedule

· MaximumPrice

3.3.15. Self Schedule

The following diagram describes the structure of a Self Schedule:
[image: image32.png]
On submission, the following items are required for a SelfSchedule:

· startTime

· endTime

· source (settlement point name)

· sink (settlement point name)

· EnergySchedule

3.4. Example XML Messages

The following is an example message for a request message for the submission of a BidSet by a Market Participant.

<?xml version="1.0" encoding="UTF-8"?>

<msg:Message xsi:noNamespaceSchemaLocation="Message.xsd"

xmlns:wsse="http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"

xmlns:wsu="http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

xmlns:msg="http://www.ercot.com/schema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<msg:Header>

<msg:Verb>create</msg:Verb>

<msg:Noun>BidSet</msg:Noun>

<msg:ReplayDetection>

<wsse:Nonce wsu:Id="" EncodingType="">3264874657467444949</wsse:Nonce>

<wsu:Created wsu:Id="">2006-12-09 15:35:57Z</wsu:Created>

</msg:ReplayDetection>

<msg:Revision>001</msg:Revision>

<msg:Source>TXU</msg:Source>

<msg:UserID>Nemat</msg:UserID>

<msg:MessageID>231232466</msg:MessageID>

<msg:Comment>Example message</msg:Comment>

</msg:Header>

<msg:Payload>

<msg:BidSet>

 <msg:tradingDate>2007-01-04</msg:tradingDate>

 <msg:participant>TXU</msg:participant>

 <msg:userid>Nemat</msg:userid>

 <msg:SelfArrangedAS>

<msg:startTime>2007-12-17T00:00:00Z</msg:startTime>

<msg:endTime>2007-12-18T00:00:00Z</msg:endTime>

<asType>NSPIN</asType>

<msg:CapacitySchedule>

<msg:startTime>2007-12-17T00:00:00Z</msg:startTime>

<msg:value1Unit>MW</msg:value1Unit>

<msg:IrregularTimePoint>

<msg:time>0</msg:time>

<msg:value1>120</msg:value1>

</msg:IrregularTimePoint>

<msg:IrregularTimePoint>

<msg:time>7200</msg:time>

<msg:value1>130</msg:value1>

</msg:IrregularTimePoint>

<msg:IrregularTimePoint>

<msg:time>28800</msg:time>

<msg:value1>115</msg:value1>

</msg:IrregularTimePoint>

 </msg:CapacitySchedule>

 </msg:SelfArrangedAS>

… additional bids inserted here …

</msg:BidSet>

</msg:Payload>

</msg:Message>

The following is an example response message, where the bid submission request was successful:

<?xml version="1.0" encoding="UTF-8"?>

<msg:ResponseMessage xsi:schemaLocation="http://www.ercot.com/schema Message.xsd"

xmlns:wsse="http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"

xmlns:wsu="http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

xmlns:msg="http://www.ercot.com/schema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<msg:Header>

<msg:Verb>reply</msg:Verb>

<msg:Noun>BidSet</msg:Noun>

<msg:ReplayDetection>

<wsse:Nonce wsu:Id="" EncodingType="">74646464</wsse:Nonce>

<wsu:Created wsu:Id="">2006-12-09T15:36:03Z</wsu:Created>

</msg:ReplayDetection>

<msg:Revision>001</msg:Revision>

<msg:Source>ERCOT</msg:Source>

<msg:UserID>MMS</msg:UserID>

<msg:MessageID>3535</msg:MessageID>

</msg:Header>

<msg:Reply>

<msg:ReplyCode>OK</msg:ReplyCode>

</msg:Reply>

<msg:Payload>

<msg:BidSet>

 <msg:tradingDate>2007-01-04</msg:tradingDate>

 <msg:participant>TXU</msg:participant>

 <msg:userid>Nemat</msg:userid>

 <msg:SelfArrangedAS>

<msg:mrid>TXU.20070104.SAA.35353</msg:mrid>

 <msg:/SelfArrangedAS>

<msg:/BidSet>

<msg:/Payload>

</msg:ResponseMessage>

The following is an example response where a bid submission was unsuccessful, as a consequence of invalid parameters on the BidSet:

<?xml version="1.0" encoding="UTF-8"?>

<msg:ResponseMessage xsi:schemaLocation="http://www.ercot.com/schema Message.xsd"

xmlns:wsse="http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"

xmlns:wsu="http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

xmlns:msg="http://www.ercot.com/schema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<msg:Header>

<msg:Verb>reply</msg:Verb>

<msg:Noun>BidSet</msg:Noun>

<msg:ReplayDetection>

<wsse:Nonce wsu:Id="" EncodingType="">74646464</wsse:Nonce>

<wsu:Created wsu:Id="">2006-12-09T15:36:03Z</wsu:Created>

</msg:ReplayDetection>

<msg:Revision>001</msg:Revision>

<msg:Source>ERCOT</msg:Source>

<msg:UserID>MMS</msg:UserID>

<msg:MessageID>3535</msg:MessageID>

</msg:Header>

<msg:Reply>

<msg:ReplyCode>ERROR</msg:ReplyCode>

<msg:Error>Bad market type</msg:Error>

<msg:Error>Bad trading date</msg:Error>

</msg:Reply>

</msg:ResponseMessage>

The following is an example response where a bid submission was unsuccessful, as a consequence of syntax failures within a specific bid within the BidSet. It is important to note that only the status and errors (if any exist) are returned for each bid.
<?xml version="1.0" encoding="UTF-8"?>

<msg:ResponseMessage xsi:schemaLocation="http://www.ercot.com/schema Message.xsd"

xmlns:wsse="http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"

xmlns:wsu="http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

xmlns:msg="http://www.ercot.com/schema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<msg:Header>

<msg:Verb>reply</msg:Verb>

<msg:Noun>BidSet</msg:Noun>

<msg:ReplayDetection>

<wsse:Nonce wsu:Id="" EncodingType="">74646464</wsse:Nonce>

<wsu:Created wsu:Id="">2006-12-09T15:36:03Z</wsu:Created>

</msg:ReplayDetection>

<msg:Revision>001</msg:Revision>

<msg:Source>ERCOT</msg:Source>

<msg:UserID>MMS</msg:UserID>

<msg:MessageID>3535</msg:MessageID>

</msg:Header>

<msg:Reply>

<msg:ReplyCode>ERROR</msg:ReplyCode>

<msg:Error>Bid syntax errors</msg:Error>

</msg:Reply>

<msg:Payload>

<msg:BidSet>

 <msg:XYZ>

<msg:mrid>TXU.20070104.XYZ.35</msg:mrid>

<msg:status>ERROR</msg:status>

 <msg:error>Unknown bid type XYZ</msg:error>

 </msg:XYZ>

 <msg:ThreePartOffer>

<msg:mrid>TXU.20070104.TPO.36</msg:mrid>

 <msg:status>ERROR</msg:status>

 <msg:error>Unknown resource</msg:error>

 </msg:ThreePartOffer>

 <msg:COP>

<msg:mrid>TXU.20070104.COP.37</msg:mrid>

 <msg:status>SUBMITTED</msg:status>

 </msg:COP>

 ... sequence of bids with status and errors (if any) appears here ...

</msg:BidSet>

</msg:Payload>

</msg:ResponseMessage>

The more detailed validations errors would typically be identified after a period of minutes, where a notification would be issued to identify that errors were found. A request using the ‘get’ verb would be used to return the specific errors to the Market Participant system.

4. Market Information

This service is used to request specific types of market-related information.

Note: This section will be augmented in future versions of this specification.

4.1. Interfaces Provided

Specific interfaces using specific combinations of verbs and nouns (i.e. payload types) are defined to permit a market participant to programmatically access market information. The verb to be used for requests would in all cases be ‘get’. The noun would identify the type of information being requested. Each request could use a message ‘Request’ package to specify one or more parameters that would qualify the request.
The processing sequence is shown in the following sequence diagram.

[image: image33.jpg]
4.2. Interfaces Required

The messages for market information requests would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	Name of payload type

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/?
	Optional: Other request parameters may be specified as needed

	Payload
	Message payload data with type defined by Noun

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	Defined payload type name

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	May be any number of error messages

	Payload
	Defined payload type

In the cases of payloads that would otherwise exceed 1 megabyte, the payloads would be zipped, base64 encoded and stored within the ‘Payload/Compressed’ tag.

4.3. Message Specifications

Specific payload definitions are not currently defined. These will be defined in future revisions.
4.3.1. Get AwardSet
The Get AwardSet interface provides the means for a market participant to obtain awards. The following parameters are specified in the RequestMessage:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	AwardSet

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/TradeDate
	Trade date

	Request/MarketType
	DAM, ADJ or RTM

An AwardSet is returned in the payload of the ResponseMessage using the following structure:

[image: image34.png]
4.3.2. Get BidSet

The Get BidSet interface provides the means for a market participant to obtain the current set of submitted bids. This will return all bids that were submitted for a given trade date, even though the bids may have been initially submitted (or updated) within multiple bid sets. The following parameters are specified in the RequestMessage:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	BidSet

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/TradeDate
	Date of trade

A BidSet is returned in the payload of the ResponseMessage using the following structure:

[image: image35.png]
4.3.3. Forecasted Load
The purpose of this interface is to provide the means to obtain forecasted load values from ERCOT. The input parameters to this request include:

· startTime

· endTime

· zone, which could be a weather zone of a load zone. If either ‘system’ or omitted, the system load forecast is returned.

The request message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	LoadForecast

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/startTime
	Start time

	Request/endTime
	End time

	Request/zone
	Desired weather or load zone. Default is for system load.

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	LoadForecast

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload/LoadForecast
	Load forecast

	
	

The following diagram describes the structure of a load forecast, which is based upon a CIM IrregularIntervalSchedule.
[image: image36.jpg]
4.3.4. Real-Time System Load

The purpose of this interface is to provide the means to obtain real-time system load from ERCOT. The request message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	SystemLoad

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	SystemLoad

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload/SystemLoad
	System load

The structure of SystemLoad is described by the following diagram. This used a CIM RegularIntervalSchedule.

[image: image37.jpg]
4.3.5. Daily Regulation Energy
The purpose of this interface is to provide the total amount of deployed reg-up and reg-down energy in each settlement interval. The request message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	Regulation

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/startTime
	Start time

	Request/endTime
	End time

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	Regulation

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload/SystemLoad
	System load

The structure of Regulation is described by the following diagram. This uses a CIM RegularIntervalSchedule. The ‘value1’ values would identify the amount of reg-up and the ‘value2’ values would identify the amount of reg-down, both in megawatts.
[image: image38.jpg]
4.3.6. Market Totals

The purpose of this interface is to provide a query for market totals. Market totals supported by this interface include:

· Total energy bought in DAM

· Total energy sold in DAM

· Total ancillary service offers received (for each type of ancillary service)

The request message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	MarketTotals

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/option
	One of:

· AncillaryServiceOffers

· EnergyBoughtInDAM

· EnergySoldInDAM

	Request/asType
	Ancillary services type (optional, used for option AncillaryServiceOffers)

	Request/startTime
	Start time

	Request/endTime
	End time

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	MarketTotals

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload/Totals
	

The Totals structure is based upon a CIM RegularIntervalSchedule, where the values of ‘value1’ are total megawatt values.
[image: image39.png]
4.3.7. Market LMPs and SPPs
The purpose of this interface is to provide a query for market LMPs and SPPs.

The request message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	LMPs (or SPPs)

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/startTime
	Start time

	Request/endTime
	End time

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	LMPs (or SPPs)

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload/LMPs
	

The structure of an LMPs/SPPs payload are shown by the following diagrams, where each LMP/SPP has a PriceSchedule for a specified bus or SettlementPoint.
[image: image40.png]
[image: image41.png]
In both cases, a PriceSchedule is based upon a CIM IrregularIntervalSchedule, where values of ‘value1’ are in $/MWh and values of ‘time’ are seconds from the startTime. The last point on the schedule is valid until the endTime.

[image: image42.png]
4.3.8. Market MCPCs

The purpose of this interface is to provide a query for MCPCs, for either the DAM or ADJ market.
The request message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	MCPCs

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/marketType
	DAM or ADJ

	Request/startTime
	Start time

	Request/endTime
	End time

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	MCPCs

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload/MCPCs
	MCPCs

The following diagram describes the structure of MCPCs:
[image: image43.png]
4.3.9. Binding Constraints

This section describes interfaces used to retrieve binding constraints. There are several options for retrieval of binding constraints:

· Binding constraints related to DRUC

· Binding constraints related to HRUC

· DAM/RTM shadow prices for binding constraints

The request message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	BindingConstraints

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/Option
	DAM/RTM/DRUC/HRUC

	Request/startTime
	Start time

	Request/endTime
	End time

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	BindingConstraints

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload/BindingConstraints
	

The following diagram describes the structures that are used for the retrieval of binding constraints and shadow prices:

[image: image44.png]
4.3.10. Active Contingencies in SCED

This section describes interfaces used to retrieve active contingencies in SCED. The request message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	SCEDViolatedConstraints

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/marketType
	DAM or ADJ

	Request/startTime
	Start time

	Request/endTime
	End time

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	SCEDViolatedConstraints

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload/SCEDViolatedConstraints
	

The structure of SCED violated constraints are described by the following diagram:
[image: image45.png]
4.3.11. Ancilary Service Schedule Obligations
The purpose of this interface is to provide ancillary service schedule obligations by service type for the requesting QSE. The request message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	ASObligations

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/ASType
	

	Request/startTime
	Start time

	Request/endTime
	End time

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	ASObligations

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload/ASObligations
	

The structure of the ASObligations payload is described by the following diagram, using a CIM RegularIntervalSchedule. The values of ‘value1’ would represent the MW obligation and the values of ‘value2’ would represent a positive or negative difference from COP.
[image: image46.png]
4.3.12. Dynamic Thermal Ratings

This section describes interfaces used to retrieve current thermal ratings for conducting equipment. The request message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/startTime
	Start time

	Request/endTime
	End time

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload/
	

The payload structure is described by the following diagram:

 Note: there are quite a few diagrams missing from this point forward …
4.3.13. Voltage Profiles

This section describes interfaces used to retrieve voltage profiles for electrical buses. The request message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/startTime
	Start time

	Request/endTime
	End time

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload/
	

The payload structure is described by the following diagram:

4.3.14. Daily Total Regulation Note: What is the difference between this section and 4.3.5?
This section describes interfaces used to retrieve the daily total reg up and reg down for a given time period. The request message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/startTime
	Start time

	Request/endTime
	End time

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload/
	

The payload structure is described by the following diagram:

4.3.15. Load Ratio Share

This section describes interfaces used to retrieve the load ration share for a QSE. The request message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/startTime
	Start time

	Request/endTime
	End time

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload/
	

The payload structure is described by the following diagram:

4.3.16. Competitive Constraints

This section describes interfaces used to retrieve competitive constraints. The request message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/startTime
	Start time

	Request/endTime
	End time

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload/
	

The payload structure is described by the following diagram:

4.3.17. Load Distribution Factors

This section describes interfaces used to retrieve load distribution factors. The request message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/startTime
	Start time

	Request/endTime
	End time

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload/
	

The payload structure is described by the following diagram:

4.3.18. Shift Factors

This section describes interfaces used to retrieve shift factors. The request message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/startTime
	Start time

	Request/endTime
	End time

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload/
	

The payload structure is described by the following diagram:

4.3.19. Customer Load Profile

This section describes interfaces used to retrieve the load profile for non-IDR metered customers. The request message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/startTime
	Start time

	Request/endTime
	End time

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload/
	

The payload structure is described by the following diagram:

4.3.20. Aggregated Ancillary Service Offer Curves

This section describes interfaces used to retrieve aggregated ancillary service offer curves. The request message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/startTime
	Start time

	Request/endTime
	End time

	Request/asType
	Optional: AS type (if not specified, all are returned)

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload/
	

The payload structure is described by the following diagram:

4.3.21. Ancillary Service System Plan

This section describes interfaces used to retrieve the ancillary service system plan. The request message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/startTime
	Start time

	Request/endTime
	End time

	Request/asType
	Optional: AS type (if not specified, all are returned)

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload/
	

The payload structure is described by the following diagram:

4.3.22. Proxy Curves

This section describes interfaces used to retrieve proxy curves. The request message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/startTime
	Start time

	Request/endTime
	End time

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload/
	

The payload structure is described by the following diagram:

4.3.23. Real-Time Calculated Energy

This section describes interfaces used to retrieve the real-time calculated energy for five minute intervals. The request message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	RealTimeEnergy

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/startTime
	Start time

	Request/endTime
	End time

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	RealTimeEnergy

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload/RealTimeEnergy
	Real time calculated energy curve with 5 minute intervals

The payload structure is described by the following diagram:

4.3.24. Derated CRRs

This section describes interfaces used to retrieve derated CRRs. The request message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/startTime
	Start time

	Request/endTime
	End time

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload/
	

The payload structure is described by the following diagram:

4.3.25. Unit Availability

This section describes interfaces used to retrieve the availability for units. The request message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/startTime
	Start time

	Request/endTime
	End time

	Request/option
	Optional: RMR or BlackStart, default is all

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload/
	

The payload structure is described by the following diagram:

4.3.26. Startup and Shutdown Instructions

This section describes interfaces used to retrieve unit startup and shutdown instructions. The request message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/startTime
	Start time

	Request/endTime
	End time

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload/
	

The payload structure is described by the following diagram:

5. Notifications

A key aspect of the design for external interfaces for Market Participants is the use of the OASIS WS-Notifications standard. Each Market Participant using the external interface would be required to provide an interface for the receipt of notification messages, compliant with the WS-Notifications standard.

5.1. Interfaces Provided

The interfaces provided are described in the WS-Notifications specification. For the purposes of use by Market Participants, there are only two interfaces of interest:

· Notify Note: is the communication of DRUC and HRUC commitments and decommitments in scope here?
· Get Messages (currently it is proposed that this interface not be provided for reasons of performance, in order to avoid periodic polling)

Note: is Non-Spin deployment in scope here?
These interfaces are used as a means to asynchronously provide information to Market Participants. Specific examples of this information include:

· Notices

· Alerts

· BidSet acceptance or error reporting
· Awards Note: are DAM 3-Part Offer awards in scope here?
· Obligations

The following sequence diagram describes the typical/potential set of information exchanges related to Notifications. The actual flows would be different based on the type of notification.
[image: image47.jpg]
Note: This section may be augmented in future versions of this specification.

5.2. Interfaces Required

The contents of the any structure would be wrapped using the ResponseMessage structure defined in section 2.1.4, as this would allow necessary security information to be passed in a uniform manner. The following table describes the contents of the header.

	Message Element
	Value

	Header/Verb
	created/updated

	Header/Noun
	Type of payload

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	May be any number of error messages

	Payload
	Payload

In the cases of payloads that would otherwise exceed 1 megabyte, the payloads would be zipped, base64 encoded and stored within the ‘Payload/Compressed’ tag.

5.3. Message Specifications

The WS-Notifications specification identifies a single message structure for notification messages. The payload that is to be delivered by the notification message is represented by the ‘any’ element in the following message structure, loosely coupling the definition of the payload from the definition of the container message structure defined by WS-Notifications thereby allowing WS-Notifications to be used with any XML data structure.

[image: image48.png]
It is important to note that the payloads for NotificationMessages are ALWAYS conveyed using the common message structure defined in section 2.1.
5.3.1. Notices and Alerts
The specific payload for an Alert or Notice is described in the following diagram. This could be used for Notices and Alerts. Where there may be many different types of Notifications, the primary difference between a Notice and an Alert is that there is an expectation that an Alert would be acknowledged.
[image: image49.png]
Specific types of notices and alerts are described by the following table:
	Type
	Alert?
	Description
	Protocol Reference
	Destination
	Data

	SCEDFailure
	N
	Notice of SCED failure
	6.5.9.2
	All QSEs
	Time interval

	NoCurve
	N
	Notice that an RTM energy curve or output schedule was not submitted for resource
	
	QSE
	Resource, time interval

	NeedAdditionalAS
	N
	Notice of need for additional AS resources
	3.16
	All QSEs
	Needed MW, AS type, time interval

	Alert
	Y
	Generic alert
	6.5.9.C.C
	
	

	Resettlement
	N
	Notice of resettlement for DAM/RTM
	9.2.6, 9.5.7
	All MPs
	Trade Date

	RTMTrueUp
	N
	Notice of True-Up settlement timeline changes for RTM
	9.5.9
	All MPs
	Trade date, Time of true-up

	NMMS Message
	N
	Messages from NMMS
	3.10
	
	

	
	
	
	
	
	

5.3.2. Bid Set Acceptance

The purpose of this notification is to indicate the acceptance of a BidSet to a QSE. This is necessary as BidSets are validated some time after the initial submission.
5.3.3. Bid Set Errors

The purpose of this message is to indicate that one or more bids in a BidSet had errors. Those bids in a BidSet without errors are otherwise accepted.
5.3.4. Pending Trade

A notification is issued periodically to a QSE where they have been identified as the counter party in a trade, but have not yet entered a matching energy, capacity or ancillary services trade. If a matching trade is not entered by the close of the market, the trade is rejected.

The following structure is used for conveying unconfirmed trades:

[image: image50.jpg]
5.3.5. Energy Offer Awards

The purpose of this message is to identify Energy Offer Awards to a QSE. The structure of this message is shown by the following diagram.
[image: image51.png]
Where an award refers to an hourly value, the transaction ID of the EnergyOffer is appended with the market hour to identify the specific hour of the award. This results in an mrid in the following form:

<MP ID>.<date>.<type>.<unique>.<hour>

5.3.6. Energy Only Offer Awards

The purpose of this message is to identify Energy Offer Awards to a QSE. The structure of this message is shown by the following diagram.

[image: image52.png]
Where an award refers to an hourly value, the transaction ID of the EnergyOnlyOffer is appended with the market hour to identify the specific hour of the award. This results in an mrid in the following form:

<MP ID>.<date>.<type>.<unique>.<hour>

5.3.7. Energy Bid Award

The purpose of this message is to identify Energy Bid Awards to a QSE. The structure of this message is shown by the following diagram.

[image: image53.png]
Where an award refers to an hourly value, the transaction ID (mrid) of the EnergyBid is appended with the market hour to identify the specific hour of the award. This results in an mrid in the following form:

<MP ID>.<date>.<type>.<unique>.<hour>

5.3.8. Ancillary Service Awards

The purpose of this message is to identify Ancillary Services Awards to a QSE. The structure of this message is shown by the following diagram.

 [image: image54.png]
Where an award refers to an hourly value, the transaction ID of the AS offer is appended with the market hour to identify the specific hour of the award. This results in an mrid in the following form:

<MP ID>.<date>.<type>.<unique>.<hour>

5.3.9. CRR Awards

The purpose of this message is to identify CRR Awards to a QSE. The structure of this message is shown by the following diagram.

[image: image55.png]
Where an award refers to an hourly value, the transaction ID of the CRR is appended with the market hour to identify the specific hour of the award. This results in an mrid in the following form:

<MP ID>.<date>.<type>.<unique>.<hour>

5.3.10. PTP Obligation Awards

The purpose of this message is to identify PTP Obligation Awards to a QSE. The structure of this message is shown by the following diagram.

[image: image56.png]
Where an award refers to an hourly value, the transaction ID of the PTPObligation is appended with the market hour to identify the specific hour of the award. This results in an mrid in the following form:

<MP ID>.<date>.<type>.<unique>.<hour>

6. Acknowledgement of Alerts

The purpose of this service is to provide the means for a Market Participant to acknowledge Alert messages. Alert messages are sent as notification messages, as described in section 5.

6.1. Interfaces Provided

There is a single operation provided to acknowledge Alert messages.

6.2. Interfaces Required

The messages to acknowledge alerts would use the following message fields, where the ‘close’ verb is used to signify acknowledgement of the Alert.:

	Message Element
	Value

	Header/Verb
	close

	Header/Noun
	Alert

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/ID
	ID of notification

	Payload
	No payload required

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	Alert

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload
	None

6.3. Message Specifications

There is no payload used for either request or response messages in conjunction with the acknowledgement of alerts. The ID of the Alert is specified in the Request package within the message.

7. Model Submission Interfaces
The purpose of this section is to define interfaces related to the submission of NOMCRs, PMCRs and SAMRs. These flows are unique in that the model changes using the RDF format may be submitted by market participants.

7.1. Interfaces Provided

There is a single operation provided to support model submission messages. XML Schemas for payload definitions related to model access are defined in ERCOT-Model.xsd. Similarily, a separate operation is provided in Nodal.wsdl for model-related interfaces. The following sequence diagram is relevant to these interfaces:
[image: image57.jpg]
7.2. Interfaces Required

There are several interfaces required to support model access and submission of NOMCRs, PMCRs and SAMRs. Where message payloads are used, the payloads are formatted using compressed RDF files.

7.3. Message Specifications

7.3.1. Model Access

The model access interface can be sent to request the URL of a model file. This does not return the model file itself. The request message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	Model

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/type
	Network or CRR

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	Model

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload/url
	URL where desired model file is located

7.3.2. Get Project Status
The purpose of this interface is to provide the means to retreive the status of projects, including NOMCR postings.

The submission message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	ProjectStatus

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/startTime
	Start time of interest

	Request/endTime
	(default is current time)

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	ProjectStatus

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload
	ProjectStatus

The structure of the response is described by the following structure:
[image: image58.jpg]
7.3.3. Get Project Details

The purpose of this interface is to provide the means to retrieve the details for a specific NOMCR PMCR or SAMR.

The submission message would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	NOMCR/PMCR/SAMR

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/ID
	ID (mrid) of desired NOMCR, PMCR or SAMR

	Request/startTime
	Start time of interest

	Request/endTime
	(default is current time)

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	NOMCR/PMCR/SAMR

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload
	NOMCR/PMCR/SAMR

The structure of the response is described by the structures used for submissions as described in the subsequent sections.
7.3.4. NOMCR Submission

The submission message would use the following message fields:

	Message Element
	Value

	Header/Verb
	create

	Header/Noun
	NOMCR

	Header/Source
	Market participant ID

	Header/UserID
	 ID of user

	Payload/any
	NOMCR

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	NOMCR

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/ID
	ID of NOMCR allocated by ERCOT

	Reply/Error
	Error message, if error encountered

	Payload
	None

The structure of a NOMCR submission is described by the following diagram:

[image: image59.jpg]
7.3.5. PMCR Submission

The submission message would use the following message fields:

	Message Element
	Value

	Header/Verb
	create

	Header/Noun
	PMCR

	Header/Source
	Market participant ID

	Header/UserID
	ID of user

	Payload/any
	PMCR

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	PMCR

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/ID
	ID of PMCR allocated by ERCOT

	Reply/Error
	Error message, if error encountered

	Payload
	None

The structure of a PMCR submission is described by the following diagram:
[image: image60.jpg][image: image61.jpg]
7.3.6. SAMR Submission
The submission message would use the following message fields:

	Message Element
	Value

	Header/Verb
	create

	Header/Noun
	SAMR

	Header/Source
	Market participant ID

	Header/UserID
	ID of user

	Payload/any
	SAMR

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	SAMR

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/ID
	ID of SAMR allocated by ERCOT

	Reply/Error
	Error message, if error encountered

	Payload
	None

The structure of a SAMR submission is described by the following diagram:

[image: image62.jpg]
8. Outage Scheduling Interfaces

The purpose of this section is to describe interfaces related to the creation, query and cancellation of outages. These interfaces would be used by QSEs and TPs.

8.1. Interfaces Provided

Interfaces are provided for the creation, query and cancellation of outages by QSEs and TPs.
8.2. Interfaces Required

8.3. Message Specifications
8.3.1. Outage Creation

TBD

8.3.2. Outage Query

TBD

8.3.3. Outage Cancellation

TBD

Appendix A: WS-Notifications

The OASIS WS-Notifications specification can be obtained from http://www.oasis-open.org. The key portions of WS-Notifications that are relevant to this specification are provided here for convenience. The following is the subset of the XML Schema for WS-Notifications that is relevant to this design.

<?xml version="1.0" encoding="UTF-8"?>

<!--

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright (C) OASIS Open (2004-2006). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

-->

<xsd:schema

 targetNamespace="http://docs.oasis-open.org/wsn/b-2"

 xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:wsrf-bf="http://docs.oasis-open.org/wsrf/bf-2"

 xmlns:wstop="http://docs.oasis-open.org/wsn/t-1"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified" attributeFormDefault="unqualified">

<!-- ======================== Imports ============================ -->

 <xsd:import namespace="http://www.w3.org/2005/08/addressing"

 schemaLocation="http://www.w3.org/2005/08/addressing/ws-addr.xsd"

 />

 <xsd:import namespace="http://docs.oasis-open.org/wsrf/bf-2"

 schemaLocation="http://docs.oasis-open.org/wsrf/bf-2.xsd"

 />

 <xsd:import namespace="http://docs.oasis-open.org/wsn/t-1"

 schemaLocation="http://docs.oasis-open.org/wsn/t-1.xsd"

 />

<!-- ================= Notification Metadata ===================== -->

 <xsd:element name="SubscriptionReference"

 type="wsa:EndpointReferenceType" />

 <xsd:element name="Topic"

 type="wsnt:TopicExpressionType" />

 <xsd:element name="ProducerReference"

 type="wsa:EndpointReferenceType" />

<!-- ================== Message Helper Types ===================== -->

 <xsd:complexType name="NotificationMessageHolderType" >

 <xsd:sequence>

 <xsd:element ref="wsnt:SubscriptionReference"

 minOccurs="0" maxOccurs="1" />

 <xsd:element ref="wsnt:Topic"

 minOccurs="0" maxOccurs="1" />

 <xsd:element ref="wsnt:ProducerReference"

 minOccurs="0" maxOccurs="1" />

 <xsd:element name="Message">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:any namespace="##any" processContents="lax"

 minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="NotificationMessage"

 type="wsnt:NotificationMessageHolderType"/>

<!-- ========== Message Types for NotificationConsumer =========== -->

 <xsd:element name="Notify" >

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="wsnt:NotificationMessage"

 minOccurs="1" maxOccurs="unbounded" />

 <xsd:any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

<!-- ======== Message Types for PullPoint ======================== -->

 <xsd:element name="GetMessages">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="MaximumNumber"

 type="xsd:nonNegativeInteger"

 minOccurs="0"/>

 <xsd:any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:anyAttribute/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="GetMessagesResponse">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="wsnt:NotificationMessage"

 minOccurs="0" maxOccurs="unbounded" />

 <xsd:any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:anyAttribute/>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

The following WSDL represents the portion of WS-Notifications that is used for the receipt of Notification messages.

<?xml version="1.0" encoding="utf-8"?>

<!--

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright (C) OASIS Open (2004-2006). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

-->

<wsdl:definitions name="WS-BaseNotification"

 targetNamespace="http://docs.oasis-open.org/wsn/bw-2"

 xmlns:wsntw="http://docs.oasis-open.org/wsn/bw-2"

 xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:wsrf-rw="http://docs.oasis-open.org/wsrf/rw-2"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<!-- ========================== Imports =========================== -->

 <wsdl:import

 namespace="http://docs.oasis-open.org/wsrf/rw-2"

 location="http://docs.oasis-open.org/wsrf/rw-2.wsdl"/>

<!-- ===================== Types Definitions ====================== -->

 <wsdl:types>

 <xsd:schema>

 <xsd:import

 namespace="http://docs.oasis-open.org/wsn/b-2"

 schemaLocation="http://docs.oasis-open.org/wsn/b-2.xsd"/>

 </xsd:schema>

 </wsdl:types>

<!-- ================ NotificationConsumer::Notify ================

 Notify(

 NotificationMessage

 (SubscriptionReference, TopicExpression, ProducerReference,

 Message)*

 returns: n/a (one way)

-->

 <wsdl:message name="Notify">

 <wsdl:part name="Notify" element="wsnt:Notify"/>

 </wsdl:message>

<!-- ========== PullPoint::GetMessages ===========

 GetMessages(MaximumNumber)

 returns: NotificationMessage list

-->

 <wsdl:message name="GetMessagesRequest">

 <wsdl:part name="GetMessagesRequest"

 element="wsnt:GetMessages"/>

 </wsdl:message>

 <wsdl:message name="GetMessagesResponse">

 <wsdl:part name="GetMessagesResponse"

 element="wsnt:GetMessagesResponse"/>

 </wsdl:message>

 <wsdl:message name="UnableToGetMessagesFault">

 <wsdl:part name="UnableToGetMessagesFault"

 element="wsnt:UnableToGetMessagesFault"/>

 </wsdl:message>

<!-- =================== PortType Definitions ===================== -->

<!-- ========= NotificationConsumer PortType Definition =========== -->

 <wsdl:portType name="NotificationConsumer">

 <wsdl:operation name="Notify">

 <wsdl:input message="wsntw:Notify" />

 </wsdl:operation>

 </wsdl:portType>

<!-- ========== PullPoint PortType Definition ===================== -->

 <wsdl:portType name="PullPoint">

 <wsdl:operation name="GetMessages">

 <wsdl:input name="GetMessagesRequest"

 message="wsntw:GetMessagesRequest" />

 <wsdl:output name="GetMessagesResponse"

 message="wsntw:GetMessagesResponse" />

 <wsdl:fault name="ResourceUnknownFault"

 message="wsrf-rw:ResourceUnknownFault" />

 <wsdl:fault name="UnableToGetMessagesFault"

 message="wsntw:UnableToGetMessagesFault" />

 </wsdl:operation>

</wsdl:definitions>
Appendix B: WSDL for Market Requests

This WSDL uses a set of operations for servicing all market requests, related to bidding information requests and alert acknowledgements.
<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:http="http://schemas.xmlsoap.org/wsdl/http/" xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/" xmlns:ns="http://www.ercot.com/wsdl/nodal/2006-12" xmlns:ns1="http://schemas.xmlsoap.org/soap/encoding/" name="Nodal" targetNamespace="http://www.ercot.com/wsdl/nodal/2006-12">

<wsdl:types>

<xsd:schema targetNamespace="http://www.ercot.com/wsdl/nodal/2006-12">

<xsd:include schemaLocation="Message.xsd"/>

</xsd:schema>

</wsdl:types>

<wsdl:message name="Request">

<wsdl:part name="Message" element="ns:RequestMessage"/>

</wsdl:message>

<wsdl:message name="Response">

<wsdl:part name="Message" element="ns:ResponseMessage"/>

</wsdl:message>

<wsdl:portType name="Nodal">

<wsdl:operation name="MarketTransactions">

<wsdl:input message="ns:Request"/>

<wsdl:output message="ns:Response"/>

</wsdl:operation>

<wsdl:operation name="MarketInfo">

<wsdl:input message="ns:Request"/>

<wsdl:output message="ns:Response"/>

</wsdl:operation>

<wsdl:operation name="Alerts">

<wsdl:input message="ns:Request"/>

<wsdl:output message="ns:Response"/>

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="NodalSOAP" type="ns:Nodal">

<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="MarketTransactions">

<soap:operation soapAction="http://www.ercot.com/Nodal/MarketTransactions"/>

<wsdl:input>

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output>

<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="MarketInfo">

<soap:operation soapAction="http://www.ercot.com/Nodal/MarketInfo"/>

<wsdl:input>

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output>

<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="Alerts">

<soap:operation soapAction="http://www.ercot.com/Nodal/Alerts"/>

<wsdl:input>

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output>

<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name="Nodal">

<wsdl:port name="NodalSOAP" binding="ns:NodalSOAP">

<soap:address location="http://www.ercot.com/Nodal/"/>

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

Appendix C: XML Schemas for Message and Payload Definitions

The following XML schema is used to define Message structures for request and response messages for the WSDL defined in Appendix B.

<?xml version="1.0" encoding="UTF-8"?>

<!-- edited with XMLSpy v2007 sp2 (http://www.altova.com) by Scott Neumann (UISOL) -->

<xsd:schema xmlns="http://www.ercot.com/wsdl/nodal/2006-12" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:wsse="http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd" xmlns:wsu="http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" targetNamespace="http://www.ercot.com/wsdl/nodal/2006-12" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xsd:import namespace="http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd" schemaLocation="WSS200401wssecurity-secext-10.xsd"/>

<xsd:import namespace="http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" schemaLocation="WSS200401wssecurity-utility-10.xsd"/>

<xsd:element name="Request">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="MarketType" type="xsd:string" minOccurs="0"/>

<xsd:element name="TradingDate" type="xsd:date" minOccurs="0"/>

<xsd:element name="OperatingDate" minOccurs="0"/>

<xsd:element name="StartTime" type="xsd:dateTime" minOccurs="0"/>

<xsd:element name="EndTime" type="xsd:dateTime" minOccurs="0"/>

<xsd:element name="Zone" minOccurs="0"/>

<xsd:element name="ASType" minOccurs="0"/>

<xsd:element name="Option" minOccurs="0"/>

<xsd:element name="ID" type="xsd:string" minOccurs="0"/>

<xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="Reply">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="ReplyCode" type="xsd:string"/>

<xsd:element name="Error" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="ID" type="xsd:string" minOccurs="0"/>

<xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="Payload">

<xsd:complexType>

<xsd:sequence>

<xsd:choice>

<xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="Document" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="Compressed" type="xsd:string" minOccurs="0"/>

</xsd:choice>

<xsd:element name="format" type="xsd:string" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="ReplayDetection">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Nonce" type="wsse:EncodedString"/>

<xsd:element name="Created" type="wsu:AttributedDateTime"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="Header">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Verb" default="get">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="cancel"/>

<xsd:enumeration value="canceled"/>

<xsd:enumeration value="change"/>

<xsd:enumeration value="changed"/>

<xsd:enumeration value="create"/>

<xsd:enumeration value="created"/>

<xsd:enumeration value="close"/>

<xsd:enumeration value="closed"/>

<xsd:enumeration value="delete"/>

<xsd:enumeration value="deleted"/>

<xsd:enumeration value="get"/>

<xsd:enumeration value="reply"/>

<xsd:enumeration value="submit"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Noun" type="xsd:string"/>

<xsd:element ref="ReplayDetection"/>

<xsd:element name="Revision" type="xsd:string" default="001"/>

<xsd:element name="Source" type="xsd:string"/>

<xsd:element name="UserID" type="xsd:string" minOccurs="0"/>

<xsd:element name="MessageID" type="xsd:string" minOccurs="0"/>

<xsd:element name="Comment" type="xsd:string" minOccurs="0"/>

<xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="Message">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="Header"/>

<xsd:choice>

<xsd:element ref="Request" minOccurs="0"/>

<xsd:element ref="Reply" minOccurs="0"/>

</xsd:choice>

<xsd:element ref="Payload" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="RequestMessage">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="Header"/>

<xsd:element ref="Request" minOccurs="0"/>

<xsd:element ref="Payload" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="ResponseMessage">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="Header"/>

<xsd:element ref="Reply" minOccurs="0"/>

<xsd:element ref="Payload" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>
The following XML schema provides examples for the definition of structures for payload definitions. The focus of the examples provided here are for bids, offers and ERCOT notifications. The examples provide here should be extended with valid enumerations and defaults in some cases. This XML schema is referenced by the preceding WSDL definition.

<?xml version="1.0" encoding="UTF-8"?>

<!-- edited with XMLSpy v2007 sp2 (http://www.altova.com) by Scott Neumann (UISOL) -->

<xs:schema xmlns="http://www.ercot.com/wsdl/nodal/2006-12/mms" xmlns:xs="http://www.w3.org/2001/XMLSchema" targetNamespace="http://www.ercot.com/wsdl/nodal/2006-12/mms" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:complexType name="MarketRequest">

<xs:annotation>

<xs:documentation>Market common request parameters</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="tradingDate" type="xs:date"/>

<xs:element name="participant" type="QSE"/>

<xs:element name="userId" type="xs:string"/>

<xs:element name="status" type="xs:string" minOccurs="0"/>

<xs:element name="mode" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="BidPriceCurve">

<xs:annotation>

<xs:documentation>Relationship between a price in $/hour (Y-axis) and a MW value (X-axis). </xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="startTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="endTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="CurveData" maxOccurs="unbounded">

<xs:complexType>

<xs:annotation>

<xs:documentation>The point data values that define a curve</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="xvalue" type="xs:float">

<xs:annotation>

<xs:documentation>The data value of the X-axis variable, depending on the X-axis units</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="y1value" type="xs:float">

<xs:annotation>

<xs:documentation>The data value of the first Y-axis variable, depending on the Y-axis units</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="xUnit" type="xs:string" minOccurs="0"/>

<xs:element name="y1Unit" type="xs:string" minOccurs="0">

<xs:annotation>

<xs:documentation>The Y1-axis units of measure.</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:complexType name="BidSet">

<xs:annotation>

<xs:documentation>CIM container class for bids and offers</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="MarketRequest">

<xs:sequence>

<xs:element name="ASOffer" type="ASOffer" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="ASTrade" type="ASTrade" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="CapacityTrade" type="CapacityTrade" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="COP" type="COP" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="CRR" type="CRR" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="DCTieSchedule" type="DCTieSchedule" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="EnergyBid" type="EnergyBid" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="EnergyOnlyOffer" type="EnergyOnlyOffer" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="EnergyTrade" type="EnergyTrade" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="IncDecOffer" type="IncDecOffer" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="OutputSchedule" type="OutputSchedule" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="PTPObligation" type="PTPObligation" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="SelfArrangedAS" type="SelfArrangedAS" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="SelfSchedule" type="SelfSchedule" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="ThreePartOffer" type="ThreePartOffer" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="FipFop">

<xs:annotation>

<xs:documentation>FIP FOP percentages</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="fipPercent" type="xs:float" minOccurs="0"/>

<xs:element name="fopPercent" type="xs:float" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="StartupCost">

<xs:annotation>

<xs:documentation>Resource startup costs</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="startTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="endTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="hot" type="xs:float" minOccurs="0"/>

<xs:element name="intermediate" type="xs:float" minOccurs="0"/>

<xs:element name="cold" type="xs:float" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="MinimumGeneration">

<xs:annotation>

<xs:documentation>Resource minimum generation costs</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="startTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="endTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="cost" type="xs:float" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="MaximumPrice">

<xs:annotation>

<xs:documentation>Maximum prices</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="startTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="endTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="price" type="xs:float" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="MinimumPrice">

<xs:annotation>

<xs:documentation>Minimum prices</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="startTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="endTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="price" type="xs:float" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="ResourceStatus">

<xs:annotation>

<xs:documentation>Resource Status </xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="startTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="endTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="operatingMode" type="OperatingMode"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Limits">

<xs:annotation>

<xs:documentation>Resource Limits</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="startTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="endTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="maximumEconomicMW" type="xs:int"/>

<xs:element name="minimumEconomicMW" type="xs:int"/>

<xs:element name="maxEmergencyMW" type="xs:int"/>

<xs:element name="minEmergencyMW" type="xs:int"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="ASCapacity">

<xs:annotation>

<xs:documentation>Ancillary Services Capacity</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="startTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="endTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="regUp" type="xs:int" minOccurs="0"/>

<xs:element name="regDown" type="xs:int" minOccurs="0"/>

<xs:element name="rrs" type="xs:int" minOccurs="0"/>

<xs:element name="nonSpin" type="xs:int" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="ThreePartOffer">

<xs:annotation>

<xs:documentation>Three Part Offer</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Offer">

<xs:sequence>

<xs:element name="resource" type="Resource" minOccurs="0"/>

<xs:element name="combinedCycle" minOccurs="0"/>

<xs:element name="FipFop" type="FipFop" minOccurs="0"/>

<xs:element name="StartupCost" type="StartupCost" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="MinimumGeneration" type="MinimumGeneration" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="BidPriceCurve" type="BidPriceCurve" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="externalInternal" default="INTERNAL" minOccurs="0">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="INTERNAL"/>

<xs:enumeration value="EXTERNAL"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="COP">

<xs:annotation>

<xs:documentation>Current Operating Plan (should consider adaptation of CIM GenUnitOpSchedule)</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="resource" type="Resource" minOccurs="0"/>

<xs:element name="startTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="endTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="status" type="xs:string" minOccurs="0"/>

<xs:element name="error" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="ResourceStatus" type="ResourceStatus" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="Limits" type="Limits" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="ASCapacity" type="ASCapacity" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="IncDecOffer">

<xs:annotation>

<xs:documentation>Incremental Decremental Offer</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Offer">

<xs:sequence>

<xs:element name="resource" type="Resource" minOccurs="0"/>

<xs:element name="combinedCycle" minOccurs="0"/>

<xs:element name="FipFop" type="FipFop" minOccurs="0"/>

<xs:element name="BidPriceCurve" type="BidPriceCurve" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="EnergyBid">

<xs:annotation>

<xs:documentation>Energy Bid</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Bid">

<xs:sequence>

<xs:element name="expirationTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="sp" type="SettlementPoint" minOccurs="0"/>

<xs:element name="bidID" type="xs:string" minOccurs="0"/>

<xs:element name="BidPriceCurve" type="BidPriceCurve" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="EnergyOnlyOffer">

<xs:annotation>

<xs:documentation>Energy Only Offer</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Offer">

<xs:sequence>

<xs:element name="sp" type="SettlementPoint" minOccurs="0"/>

<xs:element name="bidID" type="xs:string" minOccurs="0"/>

<xs:element name="BidPriceCurve" type="BidPriceCurve" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="EnergyTrade">

<xs:annotation>

<xs:documentation>Energy Trade</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Trade">

<xs:sequence>

<xs:element name="sp" type="SettlementPoint" minOccurs="0"/>

<xs:element name="EnergySchedule" type="EnergySchedule" minOccurs="0"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="CapacityTrade">

<xs:annotation>

<xs:documentation>Capacity Trade</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Trade">

<xs:sequence>

<xs:element name="CapacitySchedule" type="CapacitySchedule" minOccurs="0"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="ASTrade">

<xs:annotation>

<xs:documentation>Ancillary Services Trade</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Trade">

<xs:sequence>

<xs:element name="asType" type="ASType"/>

<xs:element name="CapacitySchedule" type="CapacitySchedule"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="OutputSchedule">

<xs:annotation>

<xs:documentation>Output Schedule</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Schedule">

<xs:sequence>

<xs:element name="resource" type="Resource" minOccurs="0"/>

<xs:element name="EnergySchedule" type="EnergySchedule" minOccurs="0"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="Bid">

<xs:annotation>

<xs:documentation>CIM Bid class</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="startTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="endTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="mrid" type="xs:string" minOccurs="0"/>

<xs:element name="marketType" type="xs:string" minOccurs="0"/>

<xs:element name="status" type="xs:string" minOccurs="0"/>

<xs:element name="error" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Schedule">

<xs:annotation>

<xs:documentation>CIM Schedule class</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="startTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="endTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="mrid" type="xs:string" minOccurs="0"/>

<xs:element name="marketType" type="xs:string" minOccurs="0"/>

<xs:element name="status" type="xs:string" minOccurs="0"/>

<xs:element name="error" type="xs:string" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Trade">

<xs:annotation>

<xs:documentation>Abstract super class for trades</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Bid">

<xs:sequence>

<xs:element name="buyer" type="xs:string" minOccurs="0"/>

<xs:element name="seller" type="xs:string" minOccurs="0"/>

<xs:element name="tradeID" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="Offer">

<xs:annotation>

<xs:documentation>Abstrract super class for offers</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Bid">

<xs:sequence>

<xs:element name="expirationTime" type="xs:dateTime" minOccurs="0"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="ASOffer">

<xs:annotation>

<xs:documentation>Ancillary Services Offer</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Offer">

<xs:sequence>

<xs:element name="resource" type="Resource" minOccurs="0"/>

<xs:element name="asType" type="ASType" minOccurs="0"/>

<xs:element name="indicator" minOccurs="0">

<xs:simpleType>

<xs:restriction base="xs:string">

<xs:enumeration value="FIXED"/>

<xs:enumeration value="VARIABLE"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name="BidPriceCurve" type="BidPriceCurve" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="SelfArrangedAS">

<xs:annotation>

<xs:documentation>Self-Arranged Ancillary Services</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Schedule">

<xs:sequence>

<xs:element name="asType" type="ASType" minOccurs="0"/>

<xs:element name="CapacitySchedule" type="CapacitySchedule" minOccurs="0"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="SelfSchedule">

<xs:annotation>

<xs:documentation>Self schedules</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Schedule">

<xs:sequence>

<xs:element name="source" type="SettlementPoint" minOccurs="0"/>

<xs:element name="sink" type="SettlementPoint" minOccurs="0"/>

<xs:element name="EnergySchedule" type="EnergySchedule" minOccurs="0"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="LoadForecast">

<xs:annotation>

<xs:documentation>Forecasted load: value1Unit is MW</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="IrregularIntervalSchedule"/>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="CRR">

<xs:annotation>

<xs:documentation>Congestion Revenue Rights</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Bid">

<xs:sequence>

<xs:element name="crrId" minOccurs="0"/>

<xs:element name="source" type="SettlementPoint" minOccurs="0"/>

<xs:element name="sink" type="SettlementPoint" minOccurs="0"/>

<xs:element name="CapacitySchedule" type="CapacitySchedule" minOccurs="0"/>

<xs:element name="MinimumReservationPrice" type="MinimumPrice" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="NOIEPeakLoadForecast" type="LoadForecast" minOccurs="0"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="PTPObligation">

<xs:annotation>

<xs:documentation>PTP Obligation</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Bid">

<xs:sequence>

<xs:element name="source" type="SettlementPoint" minOccurs="0"/>

<xs:element name="sink" type="SettlementPoint" minOccurs="0"/>

<xs:element name="bidId" type="xs:string" minOccurs="0"/>

<xs:element name="CapacityShedule" type="CapacitySchedule" minOccurs="0"/>

<xs:element name="MaximumPrice" type="MaximumPrice" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="DCTieSchedule">

<xs:annotation>

<xs:documentation>DC Tie Schedule</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Schedule">

<xs:sequence>

<xs:element name="buyer" type="xs:string" minOccurs="0"/>

<xs:element name="seller" type="xs:string" minOccurs="0"/>

<xs:element name="sp" type="SettlementPoint" minOccurs="0"/>

<xs:element name="EnergySchedule" type="EnergySchedule" minOccurs="0"/>

<xs:element name="NERCTags" type="NERCTags" minOccurs="0"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="NERCTags">

<xs:annotation>

<xs:documentation>NERC Tags</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="startTime" type="xs:dateTime"/>

<xs:element name="endTime" type="xs:dateTime"/>

<xs:element name="tag" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="IrregularIntervalSchedule">

<xs:annotation>

<xs:documentation>CIM Irregular Interval Schedule</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="BasicIntervalSchedule">

<xs:sequence>

<xs:element name="IrregularTimePoint" type="IrregularTimePoint" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="BasicIntervalSchedule">

<xs:annotation>

<xs:documentation>CIM Basic Interval Schedule</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="startTime" type="xs:dateTime"/>

<xs:element name="endTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="value1Unit" type="xs:string" minOccurs="0"/>

<xs:element name="value2Unit" type="xs:string" minOccurs="0"/>

<xs:element name="value3Unit" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="EnergySchedule">

<xs:annotation>

<xs:documentation>MW Schedules: value1Unit is MW</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="IrregularIntervalSchedule"/>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="IrregularTimePoint">

<xs:annotation>

<xs:documentation>CIM Irregular Time Point</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="time" type="xs:int"/>

<xs:element name="value1" type="xs:float"/>

<xs:element name="value2" type="xs:float" minOccurs="0"/>

<xs:element name="value3" type="xs:float" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="PriceSchedule">

<xs:annotation>

<xs:documentation>Price Schedules: value1Unit is $/MW</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="IrregularIntervalSchedule"/>

</xs:complexContent>

</xs:complexType>

<xs:element name="ASOffer" type="ASOffer"/>

<xs:element name="ThreePartOffer" type="ThreePartOffer"/>

<xs:element name="SelfSchedule" type="SelfSchedule"/>

<xs:element name="BidSet" type="BidSet"/>

<xs:complexType name="Notification">

<xs:sequence>

<xs:element name="notificationID" type="xs:string"/>

<xs:element name="notificationType" type="xs:string"/>

<xs:element name="priority" type="xs:int"/>

<xs:element name="source" type="xs:string"/>

<xs:element name="issued" type="xs:dateTime"/>

<xs:element name="expiration" type="xs:dateTime" minOccurs="0"/>

<xs:element name="summary" type="xs:string"/>

<xs:element name="details" type="xs:string" minOccurs="0"/>

<xs:element name="objectID" type="xs:string" minOccurs="0"/>

<xs:element name="referenceURL" type="xs:string" minOccurs="0"/>

<xs:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:element name="Notification" type="Notification"/>

<xs:element name="SelfArrangedAS" type="SelfArrangedAS"/>

<xs:element name="ASCapacity" type="ASCapacity"/>

<xs:element name="CRR" type="CRR"/>

<xs:element name="PTPObligation" type="PTPObligation"/>

<xs:element name="DCTieSchedule" type="DCTieSchedule"/>

<xs:element name="COP" type="COP"/>

<xs:element name="IncDecOffer" type="IncDecOffer"/>

<xs:element name="EnergyBid" type="EnergyBid"/>

<xs:element name="EnergyOnlyOffer" type="EnergyOnlyOffer"/>

<xs:element name="EnergyTrade" type="EnergyTrade"/>

<xs:complexType name="Award">

<xs:annotation>

<xs:documentation>Award superclass</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="qse" type="QSE"/>

<xs:element name="startTime" type="xs:dateTime"/>

<xs:element name="endTime" type="xs:dateTime"/>

<xs:element name="tradeDate" type="xs:date"/>

<xs:element name="mrid" type="xs:string"/>

<xs:element name="marketType" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="AwardedAS">

<xs:annotation>

<xs:documentation>Ancillary Service Award</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Award">

<xs:sequence>

<xs:element name="asType" type="ASType"/>

<xs:element name="dispatchMW" type="xs:int" minOccurs="0"/>

<xs:element name="selfSchedMW" type="xs:int" minOccurs="0"/>

<xs:element name="mpcp"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="AwardedEnergyOffer">

<xs:annotation>

<xs:documentation>EnergyAward Offer</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Award">

<xs:sequence>

<xs:element name="resource" type="Resource"/>

<xs:element name="dispatchMWh" type="xs:int"/>

<xs:element name="lmp" type="xs:float" minOccurs="0"/>

<xs:element name="spp" type="xs:float" minOccurs="0"/>

<xs:element name="sp" type="xs:string" minOccurs="0"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="AwardedCRR">

<xs:annotation>

<xs:documentation>CRR award</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Award">

<xs:sequence>

<xs:element name="awardedMW" type="xs:int"/>

<xs:element name="source" type="SettlementPoint"/>

<xs:element name="sink" type="SettlementPoint"/>

<xs:element name="price" type="xs:float"/>

<xs:element name="crrId" type="xs:string"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="AwardedPTPObligation">

<xs:annotation>

<xs:documentation>PTP Obligation award</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Award">

<xs:sequence>

<xs:element name="awardedMW" type="xs:int"/>

<xs:element name="source" type="SettlementPoint"/>

<xs:element name="sink" type="SettlementPoint"/>

<xs:element name="price" type="xs:float"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:element name="AwardedAS" type="AwardedAS"/>

<xs:element name="AwardedEnergyOffer" type="AwardedEnergyOffer"/>

<xs:element name="AwardedCRR" type="AwardedCRR"/>

<xs:element name="AwardedPTPObligation" type="AwardedPTPObligation"/>

<xs:complexType name="AwardedEnergyBid">

<xs:complexContent>

<xs:extension base="Award">

<xs:sequence>

<xs:element name="awardedMWh" type="xs:int"/>

<xs:element name="spp" type="xs:float"/>

<xs:element name="sp" type="SettlementPoint"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="AwardedEnergyOnlyOffer">

<xs:complexContent>

<xs:extension base="Award">

<xs:sequence>

<xs:element name="awardedMWh" type="xs:int"/>

<xs:element name="spp" type="xs:float"/>

<xs:element name="sp" type="SettlementPoint"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:element name="AwardedEnergyBid" type="AwardedEnergyBid"/>

<xs:element name="AwardedEnergyOnlyOffer" type="AwardedEnergyOnlyOffer"/>

<xs:complexType name="CapacitySchedule">

<xs:complexContent>

<xs:extension base="IrregularIntervalSchedule"/>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="AwardSet">

<xs:annotation>

<xs:documentation>Container for awards</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="tradeDate" type="xs:date"/>

<xs:element name="marketType" type="xs:string" minOccurs="0"/>

<xs:sequence>

<xs:element name="AwardedAS" type="AwardedAS" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="AwardedCRR" type="AwardedCRR" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="AwardedEnergyBid" type="AwardedEnergyBid" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="AwardedEnergyOffer" type="AwardedEnergyOffer" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="AwardedEnergyOnlyOffer" type="AwardedEnergyOnlyOffer" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="AwardedPTPObligation" type="AwardedPTPObligation" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:sequence>

</xs:complexType>

<xs:element name="LoadForecast" type="LoadForecast"/>

<xs:element name="SystemLoad" type="RegularIntervalSchedule"/>

<xs:complexType name="RegularIntervalSchedule">

<xs:annotation>

<xs:documentation>CIM Regular Interval Schedule</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="BasicIntervalSchedule">

<xs:sequence>

<xs:element name="timeStep" type="xs:int"/>

<xs:element name="endTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="RegularTimePoint" type="RegularTimePoint" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="RegularTimePoint">

<xs:annotation>

<xs:documentation>CIM Regular Time Point</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="sequenceNumber" type="xs:int"/>

<xs:element name="value1" type="xs:float"/>

<xs:element name="value2" type="xs:float" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:element name="OutputSchedule" type="OutputSchedule"/>

<xs:simpleType name="URL">

<xs:annotation>

<xs:documentation>URL</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:anyURI"/>

</xs:simpleType>

<xs:complexType name="PNode">

<xs:sequence>

<xs:element name="name" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:element name="MarketTotals" type="RegularIntervalSchedule"/>

<xs:complexType name="LMP">

<xs:annotation>

<xs:documentation>Locational Marginal Price</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="bus" type="ElectricalBus"/>

<xs:element name="PriceSchedule" type="PriceSchedule"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="SPP">

<xs:annotation>

<xs:documentation>Settlement Point Price</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="sp" type="SettlementPoint"/>

<xs:element name="PriceSchedule" type="PriceSchedule"/>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="ElectricalBus">

<xs:annotation>

<xs:documentation>Electrical bus, identified by name</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:simpleType name="SettlementPoint">

<xs:annotation>

<xs:documentation>Settlement point, identified by name</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:simpleType name="OperatingMode">

<xs:annotation>

<xs:documentation>Operating mode type</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:enumeration value="ON"/>

<xs:enumeration value="ONREG"/>

<xs:enumeration value="ONTEST"/>

<xs:enumeration value="ONOS"/>

<xs:enumeration value="ONOSREG"/>

<xs:enumeration value="ONDSRREG"/>

<xs:enumeration value="ONDSR"/>

<xs:enumeration value="OFF"/>

<xs:enumeration value="OFFNS"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="Resource">

<xs:annotation>

<xs:documentation>Resource, identified by name</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:element name="LMPs">

<xs:annotation>

<xs:documentation>Locational Marginal Price</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="LMP" type="LMP" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="SPPs">

<xs:annotation>

<xs:documentation>Settlement Point Price</xs:documentation>

</xs:annotation>

<xs:complexType>

<xs:sequence>

<xs:element name="SPP" type="SPP" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:simpleType name="ASType">

<xs:annotation>

<xs:documentation>Ancillary services type</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:enumeration value="REGUP"/>

<xs:enumeration value="REGDN"/>

<xs:enumeration value="NSPIN"/>

<xs:enumeration value="RRS"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="MCPCs">

<xs:complexContent>

<xs:extension base="RegularIntervalSchedule">

<xs:sequence>

<xs:element name="asType" type="ASType" minOccurs="0"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:element name="MCPCs" type="MCPCs"/>

<xs:complexType name="Constraint">

<xs:sequence>

<xs:element name="name"/>

<xs:element name="value"/>

<xs:element name="limit"/>

<xs:element name="maxShadowPrice"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="SettlementPointFactor">

<xs:sequence>

<xs:element name="sp" type="SettlementPoint"/>

<xs:element name="shiftFactor" type="xs:decimal"/>

</xs:sequence>

</xs:complexType>

<xs:simpleType name="RUCType">

<xs:annotation>

<xs:documentation>RUC type</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string">

<xs:enumeration value="DRUC"/>

<xs:enumeration value="HRUC"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="BindingConstraint">

<xs:complexContent>

<xs:extension base="Constraint">

<xs:sequence>

<xs:element name="deliveryTime" type="xs:dateTime"/>

<xs:element name="SF" type="SettlementPointFactor" maxOccurs="unbounded"/>

<xs:element name="rucType" type="RUCType" minOccurs="0"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="BindingConstraints">

<xs:sequence>

<xs:element name="BindngConstraint" type="BindingConstraint" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:element name="BindingConstraints" type="BindingConstraints"/>

<xs:complexType name="SCEDViolatedConstraint">

<xs:complexContent>

<xs:extension base="Constraint">

<xs:sequence>

<xs:element name="timestamp" type="xs:dateTime"/>

<xs:element name="SF" type="SettlementPointFactor" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="SCEDViolatedConstraints">

<xs:sequence>

<xs:element name="SCEDViolatedConstraint" type="SCEDViolatedConstraint" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:element name="SCEDViolatedConstraints" type="SCEDViolatedConstraints"/>

<xs:complexType name="ASObligation">

<xs:complexContent>

<xs:extension base="RegularIntervalSchedule">

<xs:sequence>

<xs:element name="asType" type="ASType"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:element name="ASObligations" type="ASObligations"/>

<xs:complexType name="ASObligations">

<xs:sequence>

<xs:element name="ASObligation" type="ASObligation" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="UnconfirmedTrades">

<xs:sequence>

<xs:element name="ASTrade" type="ASTrade" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="CapacityTrade" type="CapacityTrade" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="EnergyTrade" type="EnergyTrade" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:element name="UnconfirmedTrades" type="UnconfirmedTrades"/>

<xs:simpleType name="QSE">

<xs:annotation>

<xs:documentation>QSE type, identified by name</xs:documentation>

</xs:annotation>

<xs:restriction base="xs:string"/>

</xs:simpleType>

</xs:schema>

Appendix D: Sample Code for Signing a SOAP Message

The purpose of this appendix is to provide examples for signing SOAP messages.

J2EE
Java Cryptography Architecture Example
import java.security.*;

...

// generate new RSA keypair

KeyPairGenerator k =

KeyPairGenerator.getInstance(“RSA”);

KeyPair kp = k.generateKeyPair();

// sign data

Signature s =

Signature.getInstance("SHA1withRSA");

s.initSign(kp.getPrivate());

byte[] signature = s.sign(data);

.NET

public static string ClientBase64KeyID = "ODytWwSUPj9/uGbXZTAdEhhzxLE=";

public void CallWebService()

{

 PDCRegistrationProxy proxy = new PDCRegistrationProxy();

 SoapContext requestContext = proxy.RequestSoapContext;

 X509SecurityToken token = GetSigningToken(); //private–keystore

 SignupRequest request = new SignupRequest();

 request.Name = "Utility Integration Solutions";

 request.Address = ERCOT, Taylor, TX";

 requestContext.Security.Tokens.Add(token);

 requestContext.Security.Elements.Add(new Signature(token));

 SignupResponse response = proxy.SignupForPDC(request);

 ….

Appendix E: Annotated SOAP Message

An annotated example of a SOAP message follows, which includes the required security elements. The example is divided into sections and marked by a number, e.g. 1(. Following the SOAP message are explanatory notes describing each numbered section. In order to improve readability, some attributes that have URI values have been shortened.

The example does not include any namespace declarations. The table below lists the namespaces used in this example.

	Prefix
	Description
	Namespace

	SOAP-ENV
	SOAP Envelop
	http://schemas.xmlsoap.org/soap/envelope/

	ds
	XML Digital Signature
	http://www.w3.org/2000/09/xmldsig#

	wsse
	Web Service Security Extensions
	http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd

	wsu
	Web Services Security Utility
	http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd

	xsd
	XML Schema
	http://www.w3.org/2001/XMLSchema

	msg
	An private namespace for specifying elements and attributes that are specific to ERCOT Web Services
	TBD

1(
<SOAP-ENV:Envelope ">
 <SOAP-ENV:Header ">
2(
 <wsse:Security SOAP-ENV:mustUnderstand="1">
 <wsse:BinarySecurityToken

EncodingType="…#Base64Binary"

 ValueType="…#X509v3"

 wsu:Id="CertId-1776694">

MIIDDDCCAfSgAwIBAgIQM6YEf7FVYx/tZyEXgVComTANBgkqhkiG9w0 DAVPQVNJUzEeMBwGA1UEAwwVT0FTSVMgSW50ZXJvcCBUZXN0IENBMB4DTE4MDMxOTIzNTk1OVowQjEOMAwGA1UECgwFT0FTSVMxIDAeBgNVBAsVGVzdCBDZXJ0MQ4wDAYDVQQDDAVBbGljZTCBnzANBgkqhkiG9w0BAQE9By1VYo0aHrkKCNT4DkIgPL/SgahbeKdGhrbu3K2XG7arfD9tqIBIKMyvq+mUnMpNcKnLXLOjkTmMCqDYbbkehJlXPnaWLzve+mW0pJdPxtf3r sZKT8DN5Kyz+EZsCAwEAAaOBkzCBkDAJBgNVHRMEAjAAMDMGA1UdHwQaW50ZXJvcC5iYnRlc3QubmV0L2NybC9jYS5jcmwwDgYDVR0PAQH/BAQ4l0TUHZ1QV3V2QtlLNDm+PoxiDAfBgNVHSMEGDAWgBTAnSj8wes1oR3 JTw==

 </wsse:BinarySecurityToken>

3(
<ds:Signature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

 <ds:SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

4(
<ds:Reference URI="#id-1464350">
 <ds:Transforms>
 <ds:Transform

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

 </ds:Transforms>
 <ds:DigestMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

 <ds:DigestValue">

 1JmC1C0FrlPB42xfFKolgaCew5k=

 </ds:DigestValue>

 </ds:Reference>

5(
 <ds:Reference URI="#STRId-13498124">

<ds:Transforms>
 <ds:Transform

 Algorithm="…#STR-Transform" />

 <wsse:TransformationParameters">

<ds:CanonicalizationMethod

Algorithm="...xml-exc-c14n#"/>

 </wsse:TransformationParameters>

 </ds:Transform>

</ds:Transforms>
 <ds:DigestMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

 <ds:DigestValue>

 sEaCJjrObpDVfM8zuabwQdBGKbY=

 </ds:DigestValue>
 </ds:Reference>

6(
 </ds:SignedInfo>
 <ds:SignatureValue">

H1b7jH2bHpbrzJXkFS0msdUYycDMH4n6m4oTRtbo4Yk35/JzGcuwUYZ3

AwPcnqmcP5ROshjJparaPGuvQhbFR7zCxet2aoawJFWgG8jIeuDZDE8y6n+kbBzxadF2tGN8/nH6IlKg0+onD09i81rPHDAa 2kstCclX2NDet1Rnmfs=

 </ds:SignatureValue>

7(
<ds:KeyInfo>
 <wsse:SecurityTokenReference wsu:Id="STRId-13498124">
 <wsse:Reference URI="#CertId-1776694" ValueType="…#X509v3" />
 </wsse:SecurityTokenReference>
</ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 </SOAP-ENV:Header>

8(
 <SOAP-ENV:Body wsu:Id="id-1464350" >

<msg:Message>

<msg:Header>

<msg:Verb>verb</msg:Verb>

<msg:Noun>noun</msg:Noun>

 <msg:ReplayDetection>

<wsu:Created>

2006-11-29T20:05:55.022Z

</wsu:Created>

<wsse:Nonce EncodingType="…#Base64Binary">

75753793-50c2-455b-a9b3-123cb26474e7

</wsse:Nonce>
 </msg:ReplayDetection>

<msg:Revision>1</msg:Revision>

<msg:Source>market participant ID</msg:Source>

</msg:Header>

.

.

.

</msg:Message>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>
1(
This section starts the SOAP envelope and the SOAP header

2(
This section starts the Web Services Security Extensions, which includes security tokens and the digital signature. The first element in this section is the signer’s X.509 certificate, which is encoded in Base 64 binary. Note the identification of this element (CertId-1776694). The ID is later used in section 7(to reference this certificate. Note that there is only one certificate in this message. The message verifier must ensure that the certificate chains to a trusted root.

3(
This section starts the digital signature block of the SOAP message. The signature is computed using the SHA-1 hash algorithm with RSA encryption.

4(
This section designates the first of two objects that are signed. This one points to the entire message body (#id-1464350), which is specified in section 8(. The hashing algorithm is SHA-1.

5(
This section designates the second of two objects that are signed. This one points to the reference to the certificate (#STRId-13498124), which is specified in section 7(.

6(
This section specifies the value of the signature. That is, the SHA-1 hash of references to sections 7(and 8(and the encryption of this hash using the signer’s private key.

7(
This section designates a reference to the signer’s certificate. In this case, the certificate is embedded in this SOAP message, and is referenced via the ID #CertId-1776694. This ID instructs the message verifier to get the certificate from section 2(of this SOAP message.

8(
This section starts the SOAP message body. It is designated using ID id-1464350, which is referenced as a signed element in section 2(. Note that the message body includes an element called ReplayDetection, which consists of a timestamp indicating when the message was signed and a unique number (the nonce). These two elements help detect and prevent replay attacks. The rest of the message body (i.e., the business transaction) is not shown.

Appendix F: Issues

The purpose of this section is to capture issues and resolutions.

	Issue ID
	Date
	Issues
	Resolution

	1
	1/15/2007
	Bid IDs. Need to augment interfaces to provide a unique bid ID that can be used for the update and cancellation of bids as opposed to specifying a set of primary key values that differ for each bid type
	Added mrid definition.

	2
	1/15/2007
	Need to finalize scheme for acceptance and rejection of trades
	Duplicate trades must be entered. Periodic notification for unmatched trades.

	3
	1/17/2007
	Currently EnergySchedules and CapacitySchedules use CIM IrregularTimeSchedules. Could decide to use a more compact/custom structure
	

	4
	1/17/2007
	References to resources (i.e. resource names) could be more CIM-compliant using RegisteredResource.name
	Reference is by name only. Use simplest XML.

	5
	1/17/2007
	References to sources, sinks and sp could be more CIM-compliant by using Pnode.name. Related to issue 4.
	Reference is by name only. Use simplest XML.

	6
	1/18/2007
	May want to add QSE ID to each award message
	Done.

	7
	1/23/2007
	Need to clarify the use of market types for bidding interfaces for consistency with Nodal protocols.
	Market types are not used. Retain as an optional field for potential future use.

	8
	1/23/2007
	SOAP faults will be added to the WSDL in the future.
	

	9
	2/11/2007
	Need to define indicator for ASOffer and mcpc for AwardedAS. Define lmp and spp for AwardedEnergyOffer.
	

	10
	2/11/2007
	Need to define enumerations for AS types and revise section 2.3.5 and add enumerations to XML schema
	Done.

	11
	2/20/2007
	Need to define resource status enumerations and add to XML Schema
	

[image: image63.emf]

P- 1

[image: image64.emf]

P-2

	© 2006 Electric Reliability Council of Texas, Inc.
	Texas Nodal

© 2006 Electric Reliability Council of Texas, Inc. All rights reserved.

