	
	

Texas Nodal <Project Name>
Document Version: 0.14
Standard Interfaces Document
Date: 28-Dec-06
Template Name and Version: TN.PC.StandardInterfacesTemplate 1.0
ERCOT Public

[image: image1.png]

Standard Interfaces Document

Texas Nodal Enterprise Integration
External Interfaces Specification
Version <0.16>
DRAFT
28-Dec-06
Document Revisions

	Date
	Version
	Description
	Author(s)

	12/19/2006
	0.10
	First draft
	Scott Neumann

	12/20/2006
	0.11
	Revised security section
	Nemat Sarnevesht

	12/21/2006
	0.13
	Augmentation to descriptions of bidding interfaces.
	Scott Neumann

	12/22/2006
	0.14
	Added sections 2.4-2.10 to discuss other aspects of web services strategy.
	Scott Neumann

	12/27/2006
	0.15
	Miscellaneous corrections and clarifications.
	Scott Neumann

	12/28/2006
	0.16
	Miscellaneous changes to reflect internal review
	Scott Neumann

Document Approvals

	Date
	Approved By
	Approval Documented In (select)

	
	<Name>

<Role>
	___ Approval email on file

___ Signature

[Approval should be included here for the Approver for each signoff cycle of the work product. Refer to the Program work product approval process for details.]

Table of Contents

41.
Introduction

41.1.
Purpose

41.2.
Scope

41.3.
Definitions, Acronyms, and Abbreviations

51.4.
References

51.5.
Overview

61.6.
Program-level Standards

72.
Services Organization

72.1.
Common Message Structure

72.1.1.
Message Header Structure

92.1.2.
Request Message Structures

92.1.3.
Payload Structures

112.1.4.
Response Message Structures

122.2.
Common Security Implementation

122.2.1.
Secure the Transport layer

132.2.2.
Secure SOAP messages

142.3.
Modeling and Conventions

142.4.
Delivery Approach

152.5.
Technical Interoperability

152.6.
Service Level Agreements

162.7.
Auditing, Monitoring and Management

162.8.
Versioning

172.9.
Governance

172.10.
Web Service Configuration Standards

183.
Market Transaction Service

183.1.
Interfaces Provided

203.2.
Interfaces Required

213.3.
Message Specifications

243.3.1.
Three Part Offer

263.3.2.
Self Arranged Ancillary Services

283.3.3.
Incremental/Decremental Offers

293.4.
Example XML Messages

324.
Market Information

324.1.
Interfaces Provided

324.2.
Interfaces Required

334.3.
Message Specifications

345.
Notifications

345.1.
Interfaces Provided

345.2.
Interfaces Required

355.3.
Message Specifications

376.
Acknowledgement of Alerts

376.1.
Interfaces Provided

376.2.
Interfaces Required

386.3.
Message Specifications

39Appendix A: WS-Notifications

45Appendix B: WSDL for Market Requests

49Appendix C: XML Schemas for Payload Definitions

58Appendix D: Sample Code for Signing a SOAP Message

59Appendix E: Annotated SOAP Message

1. Introduction

This document describes how to develop machine to machine interfaces for Market Participant applications that need to interact with ERCOT Nodal Market systems. The intended audience of this document are developers that will be integrating Market Participant applications to the ERCOT Nodal systems though the use of the interfaces described within this specification.

Where sections 1 and 2 of this document apply to all interfaces, sections 3-6 describe specific groupings of interfaces. The appendices provide XML Schemas, WSDLs and additional examples. Where the intitial release of this document provides several example interfaces related to market bidding, in future releases all sections will be extended to describe a broader set of interfaces.

The interfaces and related interactions described by this document define the externally-visible (black box view) perspective of the services provided by this project. It is the intent of this specification and interface architecture to shield Market Participants from the details of systems integration internal to ERCOT.
This document should be viewed as a draft, with subsequent revisions to be provided. Information contained within this draft is subject to change.

1.1. Purpose

The interfaces described by this document are intended to be used by Market Participants for machine to machine integration. This document is intended to provide all the details required to build a machine to machine interface.
1.2. Scope

The scope of this document is to describe web services provided for integration by Market Participants from the perspective of external integration. This document has program level scope as related to web services that would be used by Market Participants for machine to machine interaction with nodal applications as detailed in an agreed list of interfaces to be managed by the Nodal project. The intent of this design is to leverage the integration layer (IL) to expose web services needed for external integration by Market Participants.
The following are specifically outside the scope of this document:

· The details of integration from the IL to specific applications (e.g. MMS, EMS) is outside the scope of this specification and will be described in subsequent design documents.
· Inter-Control Center Communications Protocol (ICCP) communications

· Interactions with User Interfaces (UI)

This document is not intended as a replacement for the web services provided by PR50024.
The specific list of interfaces to be included within the scope of this specification is currently in a draft under review.
1.3. Definitions, Acronyms, and Abbreviations

	Term/Acronym
	Definition

	AS
	Ancillary Services

	CIM
	Common Information Model, an IEC standard

	CRR
	Congestion Revenue Rights, a system implemented at ERCOT by Nexant that is responsible for CRR auctions

	CSV
	A file format that uses values separated by commas

	DAM
	Day Ahead Market

	EMS
	Energy Management System, a system implemented at ERCOT by Areva

	FTP
	File Transfer Protocol

	IEC
	International Electrotechnical Commission

	MIS
	Market Information System, an umbrella for the various interfaces provided to Market Participants by ERCOT

	MMS
	Market Management System, a system implemented at ERCOT by ABB

	MP
	Market Participant

	OASIS
	Organization for the Advancement of Structured Information Systems

	POC
	Proof Of Concept

	QSE
	Qualified Scheduling Entity

	SOAP
	Simple Object Access Protocol

	SoSA
	System of Systems Architecture

	WS
	Web Services. There are many web service standards that are commonly prefixed by ‘WS’.

	WSDL
	Web Services Definition Language

	XML
	eXtensible Markup Language

	XSD
	XML Schema, used to define the structure of XML documents

1.4. References

	Artifact
	Definition

	External Interfaces Conceptual Design
	Conceptual design for external interfaces using web services

	External Interfaces Security Design Specification
	Detailed security design for external interfaces. This is a companion document to the External Interfaces Conceptual design.

	OASIS WS-Notifications
	OASIS Web Services Base Notification standard

	OASIS WS-Security
	OASIS Web Services Security

1.5. Overview

This document focuses on the external interface design and related interface definitions from all perspectives except for security, which is described in detail in a companion document. The interfaces are to be provided using web services, where a rationale is provided in subsequent sections. The web services defined by this document will support a wide variety of machine to machine information exchanges.

1.6. Program-level Standards

In general, this design described by this document will leverage web services and related security standards as defined by the World-Wide Web Consortium (W3C) and OASIS. Program-level standards include those related to security. These are described in the companion security design document.

Another key program standard is the IEC Common Information Model (CIM), as defined by IEC 61970-301. This is used to define models used by ERCOT. It will also be leveraged by this design for the definition of messages used for interfaces. There is also a standard for message structures defined by IEC 61968-1.

The OASIS WS-BaseNotifications standard is used to define the mechanism for issuance of asynchronous notification messages to Market Participants.

The definition of timestamps is specified by ISO-8601.

2. Services Organization

The services described by this document are defined using a combination of Web Services Definition Language (WSDL) and XML Schema. The WSDLs are organized as follows:

· One or more WSDLs defined by ERCOT, defining operations related to synchronous request/reply web service messages

· WSDL defined by OASIS for WS-Notifications to provide support for asynchronous messaging, using web services

In both of the above cases, one or more XML Schemas (XSD) are used to define the structure of message payloads.

Example WSDL and XSD are provided in the appendices. It is anticipated that these would be key design artifacts for developers.

2.1. Common Message Structure

Unless otherwise specified, all messages use a common message envelope, where a predefined structure is used for requests and another structure is used for responses. This structure is based upon the IEC 61968-1 standard. Messages are constructed with several sections, including:

· Header: required for all messages, using a common structure for all service interfaces

· Request: optional, defining parameters needed to qualify request messages

· Response: Used for response messages to indicate success, failure and error details

· Payload: optional, used to convey message information as a consequence of the verb and noun in the message Header. The payload structure provides options for payload compression.

2.1.1. Message Header Structure

Common to both the request and response messages is a header structure. The header has several required fields that must be populated, these include:

· Verb, to identify a specific action to be taken. There are an enumerated set of valid verbs, where commonly used values include get, create, update, cancel, close and reply.

· Noun: to identify the subject of the action and/or the type of the payload (if a payload is provided)

· Source: identifying the source of the message, which should be the ID of the Market Participant or ERCOT (typically for reply messages)

· Revision: To indicate the revision of the message definition. This should be ‘1’ by default.

· Nonce: A unique number that would not be repeated by the Market Participant within the period of at least a day. This could be a sequence number, large random number or a GUID. This is defined by WS-Security. A combination of this number and the timestamp make the message unique for a given time period.

· Created: A timestamp to indicate when the message was created. This value and the Nonce are used to protect against replay attacks. This is defined by WS-Security.

The following diagram describes the header structure used for request and response messages.

[image: image2.png]Fmsgvern

o, T amumerated it
F varh thatcan b ueed 10
fom message types in
complinca wit the 1EC
1588 andard

Fmsgtioun

The Noun derfis the s
subjact of the message.

Fwssetionce. i
st B (=F

reated

T
it i 0 b spplisd
nywhere sl wideads
e pasent

Hewter B-(—— FrmsgRevsion

Fiszags headarconsins | Revion levl of he
el and desrpve message e,
it bt the

fliy

Fmsgssource

Souce parson orsysem
hat publshes the message

Urique message 1D to be
e o e g e
nd acking massaget

Optona comment

430 Hother)

There are several optional fields that may be populated. If the MessageID is populated on a request, it will be returned on the reply. The Comment field is never used for any processing-related logic. The UserID may be used to indicate the person responsible for initiating a transaction, and will be logged as appropriate, but verification is the responsibility of the Source system.
2.1.2. Request Message Structures

The following diagram describes the structure of a request message that would be used in conjunction with a WSDL operation.

[image: image3.jpg]msgipayioad

The RequestMessage can also optionally contain a package with parameters relevant to the request, called Request. It is likely that a different or variant Request packages can be defined to be used in conjunction with messages for a specific web service operation. The following is an example RequestType used in the definition of a Request package that defines some common parameters used for requests, however it is important to note that these are typically application specific.

[image: image4.jpg]Fmsgitarketiype

msgOperatingbate

One key use of the RequestType is to avoid the placement of application specific request parameters in the header or within payload definitions. Also, where a set of requests that were supported by a specific web service operation had significantly different requirements for information in the RequestType, it could justify the use of RequestType variants, were each variant was used for the definition of messages for the specific web service operation.

2.1.3. Payload Structures

There are some requests where a Payload must be provided, as would be the case for a message with a verb of create or update. Payloads are typically XML documents that conform to a defined XML schema. However, there are exceptions to this rule. Some XML payloads may not have useful XML schemas, as in the case of RDF files or dynamic query results, as well as non-XML formats such as CSV and PDF. There may also be cases where a large payload must be compressed, in the event that it would become very large and otherwise consume significant network bandwidth. In order to accommodate a variety of payload format options the following payload structure is used.

[image: image5.jpg]

In the previous diagram, any type of XML document may be included, using the XML any structure. While this provides options for loose-coupling, specific complex types defined by XML schemas (XSDs) can be used as well. The WSDL in the appendix provides an example of this case.

Payloads can also be supplied as XML encoded strings using the ‘Document’ tag, although this method is less preferred than used of the XML any.

There are also some cases where a zipped, base64 encoded string is necessary, and would be passed using the ‘Compressed’ tag. The Gnu Zip compression shall be used in order to provide compatibility within both Java and Microsoft .Net implementations. Specific example of the usage of compress would be where:

1. An XML payload, conforming to a recognized XML schema exceeds a predefined size (e.g. 1MB). This would be very common for large Market Participant sets of bids.

2. A payload has a non-XML format, such as PDF, Excel spreadsheet, CSV file or binary image

3. A payload is XML, but has no XML schema and exceeds a predefined size, as would be the case of a dynamic query that would return an XML result set

The format tag can be used to identify specific data formats, such as XML, RDF, PDF, DOC, CSV, etc. This is especially useful if the payload is compressed.

The above options provide an alternative to the use of SOAP attachments. SOAP attachments are more difficult to secure since the SOAP envelope signature signs the SOAP body but does not sign the attachment. This also requires that the payload is processed separately from the rest of the SOAP message (e.g. the message is parsed to extract the payload, and then the payload is parsed and processed). However, we believe this implementation approach is less complex than using SOAP attachments.

2.1.4. Response Message Structures

The following diagram describes the structure of a response message that would be used in conjunction with a WSDL operation, as a response to the request message.

[image: image6.png]FmsgReplyCode

Reply code, O oramor
e

Reply detas

Reply package s used o
o s or et

Responselessage’

Resuling wansacton or
Reply message snucre

Paylad cancontan WL
| et Sl

her schermaz,uing ny.
| Semen i g

The ReplyCode would be set to OK to indicate that the request was successful, otherwise it would be set to ERROR, and one or more Error elements would be provided to describe the error(s). There may also be more specific error information provided within the payload, as in the case of bids within a BidSet container.
If the MessageID was set in the Header for the RequestMessage, the value will be returned in the Header of the ResponseMessage.
2.2. Common Security Implementation

This section will provide an overview of security from the perspective of implementation requirements for Market Participants. Market Participants MUST take two basic steps in securing their Web Services Interaction with ERCOT:

1. Secure the Transport layer

2. Secure SOAP messages
2.2.1. Secure the Transport layer

The transport layer is secured by deploying Secure Socket Layer (SSL) and Transport Layer Security (TLS) following these steps:

1. Obtain client side certificate (these Certificates are issued by Verisign under the ERCOT brand).

2. Implement mutual authentication (explained below).

3. Ensure minimum SSL/TLS security settings

Note that TLS is an enhanced specification based on SSL. References to SSL refer to both SSL and TLS.

SSL is a standard mechanism for Web services that is available on virtually all application servers. This widely used, mature technology, which secures the communication channel between client and server, will satisfy all of ERCOT’s use cases for secure Web Service communications. Since it works at the transport layer, SSL covers all information passed in the channel as part of a message exchange between a client and a server, including attachments. Authentication is an important aspect of establishing an HTTPS connection. Many platforms support the following authentication mechanisms for Web Services using HTTPS:

· The server authenticates itself to clients with SSL and makes its certificate available.

· The client uses basic authentication over an SSL channel.

· Mutual authentication with SSL, using the server certificate as well as the client certificate, so that both parties can authenticate to each other.

With Web Services, the interaction use case is usually machine to machine; that is, it is an interaction between two application components with no human involvement. Machine-to-machine interactions have a different trust model from typical website interactions. In a machine-to-machine interaction, trust must be established proactively, since there can be no real-time interaction with a user about whether to trust a certificate. Ordinarily, when a user interacts with a website via a browser and the browser does not have the certificate for the site, the user is prompted about whether to trust the certificate. The user can accept or reject the certificate at that moment. With Web Services, the individuals involved in the deployment of the Web Service interaction must distribute and exchange the server certificate, and the client certificate (for mutual authentication), prior to the interaction occurrence.

The combination of the two settings—CONFIDENTIAL for transport guarantee and CLIENT-CERT for auth-method—enables mutual authentication. When set to these values, the containers for the client and the target service both provide digital certificates sufficient to authenticate each other. (These digital certificates contain client-specific identifying information.)

2.2.2. Secure SOAP messages

Besides creating a secure communication channel between a client and a Web Service, ERCOT Web Service message exchanges require that security information be embedded within the SOAP message itself. This is often the case when a message needs to be processed by several intermediary nodes before it reaches the target service or when a message must be passed among several services to be processed.

Message-level security is very useful in XML document-centric applications, since different sections of the XML document may have different security requirements or be intended for different users.

SOAP messages’ signing is done through the following:

· Obtain application/system signing certificate. (These certificates are issued by Verisign under the ERCOT brand).

· Sign all SOAP messages, using Web Services Security Standards and its X.509 Certificate Token Profile (see J2EE and .NET code snippets below)

· Message headers MUST include a timestamp and a nonce

· Validate all SOAP messages:

· Signature

· Certificates

· Revocation status of certificates

· Use of timestamp and nonce (to prevent replay attacks)

Appendix D provides examples for the generation of signatures. Appendix E provides an annotated example of a SOAP message.

2.3. Modeling and Conventions

There are several conventions that are used for definitions, data items and information models. These include:

· The use of data structures defined by the IEC CIM where appropriate in payload definitions

· CIM naming conventions are used wherever possible, e.g. ClassName, propertyName

· The properties ‘startTime’ and ‘endTime’ are typically used to identify time intervals, as they are also used within many CIM classes. Instead of using combinations of start date, start hour and potentially an interval number (e.g. to represent 15 minute intervals), absolute times should be specified.

· The use of Universal Coordinated Time (UTC) as defined by ISO 8601 for all time values. This avoids issues related to time zones and daylight savings time changes. The date and time format is ‘YYYY-MM-DD hh:mm:ssZ’, where the appended ‘Z’ indicates Zulu (i.e. use of UTC or GMT). For example, from a Central Standard Time perspective, startTime and endTime values of 2008-01-01 06:00:00Z and 2008-01-02 06:00:00Z would delineate a specific operating day with a date of 2008-01-01.

· Within XML definitions, tags should be namespace qualified. For example, a tag of <tag> should be prefixed by a specific namespace reference, e.g. <ns:tag>. This will help to eliminate ambiguity.

· Units for energy quantities are in megawatts (MW).

· Units for energy prices are in $/MW

· Valid market types include: DAM, DRUC, HRUC, SCED, SASM, CRR and ADJ

· Trading dates are specified using YYYY-MM-DD, which indicates the day on which the market closes

Note that additional values and conventions will be defined as market requirements are finalized.

2.4. Delivery Approach

In advance of a Nodal go live and in accordance with agreed schedule and dependencies, ERCOT will provide the following:

· Interface specifications for web services

· Design artifacts, including XML schemas and WSDLs

· Source code examples

· A sand box environment for testing the interactions between the Maket Particpants and ERCOT. This environment will eventually be used for qualification of QSEs.

The interface specifications, artifacts and implementation of the sand box environment will be staged. An iterative implementation approach will be used, where feedback from each stage will be used to plan subsequent stages.

2.5. Technical Interoperability

There are several strategies that are being employed in order to achieve technical interoperability. These include:

· Use of open standards

· API subgroup allows input from Market Participants on interoperability issues

· The early deployment of a sandbox environment that enables ERCOT to work with the Market Participants to insure interoperability issues are addressed prior to market trials

· Providing sample Java and .Net code

· Deployment of interfaces via the sandbox environment for early testing by Market Participants, so that feedback can be provided to ERCOT

Open standards are a key part of the strategy to achieve technical interoperability. Standards of particular interest include:
· W3C standards

· OASIS WS-* standards

· IEC Common Information Model and related standards (e.g. IEC 61968-1)

It is very important that the implementation of Web Service interfaces not be dependent upon any proprietary, third party products. Another key requirement is that implementation must be possible using both Java and .Net development tools.

More details on technical interoperability will be provided as a consequence of existing web services provided by ERCOT, detailed design and experience with the Sand Box environment.

2.6. Service Level Agreements

Different categories of Web Services will have different service level agreements (SLAs). The SLAs for some Web Services are directly impacted by the variability in the amount of data that can be transferred (e.g. large bid sets).

The response time periods specified for each interface covered by an SLA typically will vary to some degree, based upon factors such as network and system loading. Consequentially, each SLA will be stated that in a manner such that each SLA will be honored Z% of the time.

The following are example SLA specifications for categories of Web Services. However, more specific SLAs will be identified for specific interfaces as required.

Web Services for bidding:

· Must be over X% available

· Validation of bid sets will be processed within M1 minutes after the bid set is initially submitted or updated
· Bid set inquiries will be processed within S1 seconds, with an additional S2 seconds per bid
Web services for obtaining real-time market information and providing acknowledgments and confirmations:

· Must be over X% available

· Requests involving less than 10KB data should be processed within S3 seconds, unless otherwise specified for a specific interface
Web services for other than real time transactions and information requests:

· Must be over Y% available

· Requests involving less than 10KB data should be processed within S4 seconds, unless otherwise specified for a specific interface

Notification interfaces, where the SLA obligations are also on the Market Participant as well as ERCOT:

· ERCOT will post notifications to a Market Participant within S5 seconds of the time of internal posting

· Notification service interface provided by Market Participant should be minimally Y% available. Any ‘downtime’ or periods of inaccessibility will directly impact the timeliness of notifications (e.g. validation of bid sets, alerts, etc.) from ERCOT.

Note: These values and additional SLAs will be finalized once the vendor requirements are complete.

2.7. Auditing, Monitoring and Management

ERCOT will perform auditing, monitoring and management for Web Services described by this specification using common services. Internal auditing by ERCOT will be used to track and insure that SLAs are met by ERCOT. All Web Service requests will be logged by ERCOT in order to permit calculations related to SLAs. The signatures supplied on SOAP messages will be recorded with transactions as a means of non-repudiation of each transaction.

It is important to recognize that ERCOT is not responsible for the monitoring and management of Market Participant software and network connectivity. Therefore ERCOT cannot guarantee that notification interfaces provided by Market Participants are accessible as needed for timely delivery of notifications.

2.8. Versioning

It is important to recognize that new versions of interfaces may be provided over time, largely as a consequence of:

· Staging of initial implementation

· New requirements

· Upgrades to vendor products

Wherever possible, interfaces will be evolved through augmentation, where a newer version of an interface is compatible with a previous version of an interface. However, this will not always be possible. New versions of interfaces will be manifested by:

· Changes to WSDLs

· Changes to XML Schemas

· Changes to software implementations

New versions will be deployed within a Sand Box environment for a testing/trial period. WSDL and XML schemas namespaces will include a date reference. Messages will use the Header/Revision field to identify a specific revision - this will enable ERCOT to process multiple versions of an interface where appropriate.

A detailed versioning strategy will be developed and presented to the API Subgroup and TPTF.
2.9. Governance

The web service interfaces will be critical to the operations of both ERCOT and Market Participants. The Web Services will evolve for many reasons, especially as the needs of the market evolve. Governance policies and processes will need to be defined for the Web Service lifecycle that provide strict guidelines related to:

· Design

· Implementation

· Testing

· Deployment

· Management
A comprehensive governance strategy will need to be developed and implemented by ERCOT with input from the API Subgroup and TPTF.

2.10. Web Service Configuration Standards

ERCOT will configure its web servers with specific parameters that may be of consequence to use of Web Services by Market Participants (e.g. for security). Market Participants will also need to set up Web Services to handle notifications from ERCOT. ERCOT will define specific configuration details and parameters to be used by Market Participants.

Detailed web service configuration standards will be provided to the API Subgroup and TPTF and will be refined through detailed design and experience with the Nodal Sand Box environment.

3. Market Transaction Service

The purpose of the MarketTransaction Service is to support interfaces required for bidding. This section describes the use of web services by Market Participants as required for bidding processes that involve the submission, update and cancellation of bids, trades, offers and schedules for specific markets.
For a given market type on a given trading day, each Market Participant provides a BidSet to ERCOT that will be used at the close of the market to determine awards and obligations and to provide schedules needed for grid operations. Up until the close of the market, a Market Participant may create, update or cancel bids, trades, offers and schedules. When submitted, ERCOT will validate the submission, reporting errors to Market Participants using notification messages.
3.1. Interfaces Provided

The interfaces provide the means to create (i.e. submit), get (i.e. query) and cancel bids for a given market type on a given trading date. A single container class ‘BidSet’ is used to hold a set of bids within the Payload section of the message, where each of the bids or offers may be of a different type.

The following diagram shows an example message sequence, using the verb and noun convention. Where this section focuses on the requests made by Market Participant systems to the ERCOT Nodal Web Services, the sequence diagram also includes notification messages sent from ERCOT to Market Participant Notification services (as described in section 5).

[image: image7.jpg]Market Participant
Notification Service.

Market Participant
System

ERCOT Hodal
External Interfaces

1: creste Bidset

2 BidSet valieted

3 uptated BiISel(status=ERRORS)

4 gt Bidset N

5. cancel Bdset

6 updiste Bidset

7. BSet re-valideted

Market Close

10 created Awards

9 Deternine awards
and]obigations.

The message sequence shown involves the following steps:

1. Market participant sends a RequestMessage with an initial BidSet to ERCOT for a specific market, where ERCOT performs a simple syntax scan and typically sends a ResponseMessage with ReplyCode=OK, and with a BidSet status=SUBMITTED.

2. ERCOT validates the BidSet. This could take several minutes.

3. A notification message (using verb=updated) is sent to the notification interface provided by the Market Participant. The status of the BidSet will indicate whether it was VALIDATED or had ERRORS. This message will not include the complete BidSet.

4. In the event of ERRORS, the Market Participant would make a request to get the current BidSet using a RequestMessage with verb=get. Any errors will be identified for each specific bid, as returned in a ResponseMessage using verb=reply.
5. A Market Participant may choose to cancel one or more bids using a RequestMessage with verb=cancel.

6. The Market Participant may resubmit some bids (e.g. to correct errors), to update bids (e.g. change prices) and/or submit new bids, using a RequestMessage with verb=update.
7. The newly aggregated BidSet (that includes the current set of bids consequential to steps 1, 5 and 6) is validated.

8. As in step 3, a notification message is sent to the Market Participant to indicate whether or not the BidSet was validated. The notification message uses verb=updated.
9. After the close of the market, awards and obligations are determined.

10. Market participants ate notified of specific awards and/or obligations. The notification message uses verb=created.
The example provided does not reflect the complete processing required for confirmation or trades. This will be described in a subsequent revision.

3.2. Interfaces Required

The following table describes the parameters used in the request message for market transactions, noting that each transaction has a request and a response message. The verbs create, update, get and cancel are respectively used to submit, update, query and cancel bid sets.

	Message Element
	Value

	Header/Verb
	create/get/update/cancel

	Header/Noun
	BidSet

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Payload
	BidSet (used for create, update and cancel request messages, and may optionally be used for get requests to identify specific bids of interest)

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	BidSet

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	May be any number of error message if the ReplyCode is ERROR

	Payload
	BidSet (used for response to get messages) The BidSet/status value may be ACCEPTED, SUMBITTED or ERRORS

In the cases of payloads that would otherwise exceed 1 megabyte, the payloads should be zipped, base64 encoded and stored within the ‘Payload/Compressed’ tag.

For the purposes of BidSets, the verbs create and update can be used interchangeably.

3.3. Message Specifications

The following structure describes a BidSet. A BidSet is the payload type used for the submission, query and cancellation of bids and offers. A BidSet identifies the market type, trading date and Market Participant with a sequence of any number of bids and offers. The following uniquely identifies a BidSet:

· Market Participant

· Trading date

· Market type (e.g. DAM)

The header of a BidSet is shown in the following diagram.

[image: image8.png]MarketRequest

marketType

Firadingbate

Frarticipant

Fuserla

The submission (using create) of a BidSet by a Market participant will have the effect of either creating new bids (or offers, schedules, trades, etc.) for a given market, or overwriting existing bids that were previously submitted for a given BidSet for a given market. Additionally, bids may be submitted in partial batches of one or more bids. When this is done, new bids are aggregated with previously submitted bids and updates to previously submitted bids overwrite the previous bid.

In order to cancel a bid, a BidSet must be sent using the ‘cancel’ verb, with the specific bids to be cancelled identified within the BidSet. Cancel can only be used to cancel specific bids, not a whole BidSet for a given market.

In order to query a BidSet, A BidSet is sent using the ‘get’ verb, where the identified for the specific BidSet are identified. There are then two options:

1. If no bids are identified within the BidSet, all bids for the particular market will be returned in the BidSet in the response message.
2. If specific bids are identified within the BidSet, only the details of the specified bids will be returned in the BidSet in the response message.

When a BidSet is returned by a ‘get’ request for a given market, the status value (i.e. BidSet/status) in the BidSet header is populated. Values could include:

· SUBMITTED (to indicate submission, but no further processing)

· ACCEPTED (to indicate successful validation of all bids within the BidSet)

· ERRORS (to indicate that there are errors for one or more bids within the BidSet)

Note: This section will be augmented in future versions of this specification.

[image: image9.png]| Fuadingdate
I Fpartpant
CIM container class for bids. {Cusertd

nd s

|
|
|
|
@ |
| |
| |
| |
| |

The following sub sections describe the structure of specific bid, offer, trade and schedule types. Typically each bid or offer will have a set of properties that along with the type of bid, offer or schedule makes it unique. Typically these would include:

· Bid, offer, schedule or trade type

· Resource

· Ancillary Service type

When submitting a bid (offer, schedule or trade) using create or update, all properties for the bid must be specified. When performing a get or cancel request, only those parameters that uniquely identify the bid must be specified. The following diagram shows information commonly maintained for each type of bid. The status for a given bid may be SUBMITTED, ACCEPTED, ERRORS or CANCELED. If the status is ERRORS, there may be one or more error stings identified.

[image: image10.png]Fetartime

FendTime

(Bia

= FmarketType

e dazs

3.3.1. Three Part Offer

The following diagram defines the structure of a three part offer that could be included within a BidSet. This is one of the more complex structures as it involves startup costs, minimum generation costs and bid price curves. The MinimumGeneration type is derived from the CIM IrregularIntervalSchedule class. The BidPriceCurve is defined by CIM directly as a subclass of CurveSchedule.

[image: image11.png]ThicePartOfter B}

I
ThreePartoffer

Fetarttime

The error tag is used to return one or more errors that may be the consequence of the failure of business or syntax validation rules for each type of bid or offer. The StartupCost, MinimumGeneration and BidPriceCurve elements are based upon CIM schedules and curves. These are detailed in the following diagrams:

[image: image12.png]—etarttime

Price Schadulez: vaielLiit
54

Irregular TimePoint

[image: image13.png]The dats vilus of the .32

rsble, depanding on he
Wi units
BidpriceCurve B}
Refstorap batwaen 3 pice Fyivaue

in $hour (1-3) and W0

o a1, The data value of the st

Vs varhle, depindng
onthe ¥ s

The Vi unis of

3.3.2. Self Arranged Ancillary Services

The following diagram describes the structure of a schedule for self arranged ancillary services. The ancillary service type is identified along with an energy schedule (derived from the CIM Irregular Interval Schedule class).

[image: image14.png]Fastype

Fetartime

FendTime

Sl manged Ancllry
iy

EneraySchedule

—etarttime

Fuime

valuet

The following XML is an example of a self arranged AS, showing the use of an EnergySchedule:

<?xml version="1.0" encoding="UTF-8"?>

<SelfSchedule xsi:noNamespaceSchemaLocation="ERCOT.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<asType>NSPIN</asType>

<startTime>2007-12-17 00:00:00Z </startTime>

<endTime>2007-12-17 24:00:00Z </endTime>

<EnergySchedule>

<startTime>2007-12-17 00:00:00Z</startTime>

<value1Unit>MW</value1Unit>

<IrregularTimePoint>

<time>0</time>

<value1>120</value1>

</IrregularTimePoint>

<IrregularTimePoint>

<time>7200</time>

<value1>130</value1>

</IrregularTimePoint>

<IrregularTimePoint>

<time>28800</time>

<value1>115</value1>

</IrregularTimePoint>

</EnergySchedule>

</SelfSchedule>

3.3.3. Incremental/Decremental Offers

The following diagram describes the structure of an incremental/decremental offer. This shows the details of the FipFop and BidPriceCurve structures that are contained within.

[image: image15.png]Fetarttime

FendTime

=Pt

The Vi uns of

3.4. Example XML Messages

The following is an example message for a request message for the submission of a BidSet by a Market Participant.

<?xml version="1.0" encoding="UTF-8"?>

<msg:Message xsi:schemaLocation="http://www.ercot.com/schema Message.xsd"

xmlns:wsse="http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"

xmlns:wsu="http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

xmlns:msg="http://www.ercot.com/schema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<msg:Header>

<msg:Verb>create</msg:Verb>

<msg:Noun>BidSet</msg:Noun>

<msg:ReplayDetection>

<wsse:Nonce wsu:Id="" EncodingType="">3264874657467444949</wsse:Nonce>

<wsu:Created wsu:Id="">2006-12-09 15:35:57Z</wsu:Created>

</msg:ReplayDetection>

<msg:Revision>001</msg:Revision>

<msg:Source>MP1</msg:Source>

<msg:UserID>Joe1234</msg:UserID>

<msg:MessageID></msg:MessageID>

<msg:Comment>Example message</msg:Comment>

</msg:Header>

<msg:Payload>

<msg:BidSet>

 ... sequence of bids appears here ...

</msg:BidSet>

</msg:Payload>

</msg:Message>

The following is an example response message, where the bid submission request was successful:

<?xml version="1.0" encoding="UTF-8"?>

<msg:ResponseMessage xsi:schemaLocation="http://www.ercot.com/schema Message.xsd"

xmlns:wsse="http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"

xmlns:wsu="http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

xmlns:msg="http://www.ercot.com/schema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<msg:Header>

<msg:Verb>reply</msg:Verb>

<msg:Noun>BidSet</msg:Noun>

<msg:ReplayDetection>

<wsse:Nonce wsu:Id="" EncodingType="">74646464</wsse:Nonce>

<wsu:Created wsu:Id="">2006-12-09 15:36:03</wsu:Created>

</msg:ReplayDetection>

<msg:Revision>001</msg:Revision>

<msg:Source>ERCOT</msg:Source>

<msg:UserID>MMS</msg:UserID>

<msg:MessageID>3535</msg:MessageID>

</msg:Header>

<msg:Reply>

<msg:ReplyCode>OK</msg:ReplyCode>

</msg:Reply>

</msg:ResponseMessage>

The following is an example response where a bid submission was unsuccessful, as a consequence of invalid parameters on the BidSet:

<?xml version="1.0" encoding="UTF-8"?>

<msg:ResponseMessage xsi:schemaLocation="http://www.ercot.com/schema Message.xsd"

xmlns:wsse="http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"

xmlns:wsu="http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

xmlns:msg="http://www.ercot.com/schema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<msg:Header>

<msg:Verb>reply</msg:Verb>

<msg:Noun>BidSet</msg:Noun>

<msg:ReplayDetection>

<wsse:Nonce wsu:Id="" EncodingType="">74646464</wsse:Nonce>

<wsu:Created wsu:Id="">2006-12-09 15:36:03</wsu:Created>

</msg:ReplayDetection>

<msg:Revision>001</msg:Revision>

<msg:Source>ERCOT</msg:Source>

<msg:UserID>MMS</msg:UserID>

<msg:MessageID>3535</msg:MessageID>

</msg:Header>

<msg:Reply>

<msg:ReplyCode>ERROR</msg:ReplyCode>

<msg:Error>Bad market type</msg:ReplyCode>

<msg:Error>Bad trading date</msg:ReplyCode>

</msg:Reply>

</msg:ResponseMessage>

The following is an example response where a bid submission was unsuccessful, as a consequence of syntax failures within a specific bid within the BidSet:

<?xml version="1.0" encoding="UTF-8"?>

<msg:ResponseMessage xsi:schemaLocation="http://www.ercot.com/schema Message.xsd"

xmlns:wsse="http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"

xmlns:wsu="http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

xmlns:msg="http://www.ercot.com/schema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<msg:Header>

<msg:Verb>reply</msg:Verb>

<msg:Noun>BidSet</msg:Noun>

<msg:ReplayDetection>

<wsse:Nonce wsu:Id="" EncodingType="">74646464</wsse:Nonce>

<wsu:Created wsu:Id="">2006-12-09 15:36:03</wsu:Created>

</msg:ReplayDetection>

<msg:Revision>001</msg:Revision>

<msg:Source>ERCOT</msg:Source>

<msg:UserID>MMS</msg:UserID>

<msg:MessageID>3535</msg:MessageID>

</msg:Header>

<msg:Reply>

<msg:ReplyCode>ERROR</msg:ReplyCode>

<msg:Error>Bid syntax errors</msg:ReplyCode>

</msg:Reply>

<msg:Payload>

<msg:BidSet>

 <msg:XYZ>

 <msg:error>Unknown bid type XYZ</msg:error>

 </msg:XYZ>

 ... sequence of bids with syntax errors appears here ...

</msg:BidSet>

</msg:Payload>

</msg:ResponseMessage>

The more detailed validations errors would typically be identified after a period of minutes, where a notification would be issued to identify that errors were found. A request using the ‘get’ verb would be used to return the specific errors to the Market Participant system.

4. Market Information

This service is used to request specific types of market-related information.

Note: This section will be augmented in future versions of this specification.

4.1. Interfaces Provided

Specific interfaces using specific combinations of verbs and nouns (i.e. payload types) are not currently defined. The verb to be used for requests would in all cases be ‘get’.

4.2. Interfaces Required

The messages for market information requests would use the following message fields:

	Message Element
	Value

	Header/Verb
	get

	Header/Noun
	Name of payload type

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/?
	Optional: Other request parameters may be specified as needed

	Payload
	Message payload data with type defined by Noun

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	Defined payload type name

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	May be any number of error messages

	Payload
	Defined payload type

In the cases of payloads that would otherwise exceed 1 megabyte, the payloads would be zipped, base64 encoded and stored within the ‘Payload/Compressed’ tag.

4.3. Message Specifications

Specific payload definitions are not currently defined. These will be defined in future revisions.
5. Notifications

A key aspect of the design for external interfaces for Market Participants is the use of the OASIS WS-Notifications standard. Each Market Participant using the external interface would be required to provide an interface for the receipt of notification messages, compliant with the WS-Notifications standard.

5.1. Interfaces Provided

The interfaces provided are described in the WS-Notifications specification. For the purposes of use by Market Participants, there are only two interfaces of interest:

· Notify

· Get Messages (currently it is proposed that this interface not be provided for reasons of performance, in order to avoid periodic polling)

These interfaces are used as a means to asynchronously provide information to Market Participants. Specific examples of this information include:

· Notices

· Alerts

· BidSet acceptance or errors

· Awards

· Obligations

· Trades (for confirmation)

Note: This section may be augmented in future versions of this specification.

5.2. Interfaces Required

The contents of the any structure would be wrapped using the ResponseMessage structure defined in section 2.1.4, as this would allow necessary security information to be passed in a uniform manner. The following table describes the contents of the header.

	Message Element
	Value

	Header/Verb
	created/updated

	Header/Noun
	Type of payload

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	May be any number of error messages

	Payload
	Payload

In the cases of payloads that would otherwise exceed 1 megabyte, the payloads would be zipped, base64 encoded and stored within the ‘Payload/Compressed’ tag.

5.3. Message Specifications

The WS-Notifications specification identifies a single message structure for notification messages. The payload that is to be delivered by the notification message is represented by the ‘any’ element in the following message structure, loosely coupling the definition of the payload from the definition of the container message structure defined by WS-Notifications thereby allowing WS-Notifications to be used with any XML data structure.

[image: image16.png]lotificationMessage

The specific payload for an Alert or Notice is described in the following diagram. Other payloads, such as a BidSet, would be used to identify bidding errors.

[image: image17.png]otification £

notificationld

expiration

Feummary

Loy Hother »

6. Acknowledgement of Alerts

The purpose of this service is to provide the means for a Market Participant to acknowledge Alert messages. Alert messages are sent as notification messages, as described in section 5.

6.1. Interfaces Provided

There is a single operation provided to acknowledge Alert messages.

6.2. Interfaces Required

The messages to acknowledge alerts would use the following message fields, where the ‘close’ verb is used to signify acknowledgement of the Alert.:

	Message Element
	Value

	Header/Verb
	close

	Header/Noun
	Alert

	Header/Source
	Market participant ID

	Header/UserID
	Optional: ID of user

	Request/ID
	ID of notification

	Payload
	No payload required

The corresponding response messages would use the following message fields:

	Message Element
	Value

	Header/Verb
	reply

	Header/Noun
	Alert

	Header/Source
	ERCOT

	Reply/ReplyCode
	Reply code, success=OK

	Reply/Error
	Error message, if error encountered

	Payload
	None

6.3. Message Specifications

There is no payload used for either request or response messages in conjunction with the acknowledgement of alerts. The ID of the Alert is specified in the Request package within the message.

Appendix A: WS-Notifications

The OASIS WS-Notifications specification can be obtained from http://www.oasis-open.org. The key portions of WS-Notifications that are relevant to this specification are provided here for convenience. The following is the subset of the XML Schema for WS-Notifications that is relevant to this design.

<?xml version="1.0" encoding="UTF-8"?>

<!--

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright (C) OASIS Open (2004-2006). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

-->

<xsd:schema

 targetNamespace="http://docs.oasis-open.org/wsn/b-2"

 xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:wsrf-bf="http://docs.oasis-open.org/wsrf/bf-2"

 xmlns:wstop="http://docs.oasis-open.org/wsn/t-1"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 elementFormDefault="qualified" attributeFormDefault="unqualified">

<!-- ======================== Imports ============================ -->

 <xsd:import namespace="http://www.w3.org/2005/08/addressing"

 schemaLocation="http://www.w3.org/2005/08/addressing/ws-addr.xsd"

 />

 <xsd:import namespace="http://docs.oasis-open.org/wsrf/bf-2"

 schemaLocation="http://docs.oasis-open.org/wsrf/bf-2.xsd"

 />

 <xsd:import namespace="http://docs.oasis-open.org/wsn/t-1"

 schemaLocation="http://docs.oasis-open.org/wsn/t-1.xsd"

 />

<!-- ================= Notification Metadata ===================== -->

 <xsd:element name="SubscriptionReference"

 type="wsa:EndpointReferenceType" />

 <xsd:element name="Topic"

 type="wsnt:TopicExpressionType" />

 <xsd:element name="ProducerReference"

 type="wsa:EndpointReferenceType" />

<!-- ================== Message Helper Types ===================== -->

 <xsd:complexType name="NotificationMessageHolderType" >

 <xsd:sequence>

 <xsd:element ref="wsnt:SubscriptionReference"

 minOccurs="0" maxOccurs="1" />

 <xsd:element ref="wsnt:Topic"

 minOccurs="0" maxOccurs="1" />

 <xsd:element ref="wsnt:ProducerReference"

 minOccurs="0" maxOccurs="1" />

 <xsd:element name="Message">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:any namespace="##any" processContents="lax"

 minOccurs="1" maxOccurs="1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 </xsd:sequence>

 </xsd:complexType>

 <xsd:element name="NotificationMessage"

 type="wsnt:NotificationMessageHolderType"/>

<!-- ========== Message Types for NotificationConsumer =========== -->

 <xsd:element name="Notify" >

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="wsnt:NotificationMessage"

 minOccurs="1" maxOccurs="unbounded" />

 <xsd:any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

<!-- ======== Message Types for PullPoint ======================== -->

 <xsd:element name="GetMessages">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element name="MaximumNumber"

 type="xsd:nonNegativeInteger"

 minOccurs="0"/>

 <xsd:any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:anyAttribute/>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="GetMessagesResponse">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="wsnt:NotificationMessage"

 minOccurs="0" maxOccurs="unbounded" />

 <xsd:any namespace="##other" processContents="lax"

 minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>

 <xsd:anyAttribute/>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

The following WSDL represents the portion of WS-Notifications that is used for the receipt of Notification messages.

<?xml version="1.0" encoding="utf-8"?>

<!--

OASIS takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on OASIS's procedures with respect to rights in OASIS specifications can be found at the OASIS website. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification, can be obtained from the OASIS Executive Director.

OASIS invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to implement this specification. Please address the information to the OASIS Executive Director.

Copyright (C) OASIS Open (2004-2006). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to OASIS, except as needed for the purpose of developing OASIS specifications, in which case the procedures for copyrights defined in the OASIS Intellectual Property Rights document must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by OASIS or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and OASIS DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

-->

<wsdl:definitions name="WS-BaseNotification"

 targetNamespace="http://docs.oasis-open.org/wsn/bw-2"

 xmlns:wsntw="http://docs.oasis-open.org/wsn/bw-2"

 xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2"

 xmlns:wsa="http://www.w3.org/2005/08/addressing"

 xmlns:wsrf-rw="http://docs.oasis-open.org/wsrf/rw-2"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<!-- ========================== Imports =========================== -->

 <wsdl:import

 namespace="http://docs.oasis-open.org/wsrf/rw-2"

 location="http://docs.oasis-open.org/wsrf/rw-2.wsdl"/>

<!-- ===================== Types Definitions ====================== -->

 <wsdl:types>

 <xsd:schema>

 <xsd:import

 namespace="http://docs.oasis-open.org/wsn/b-2"

 schemaLocation="http://docs.oasis-open.org/wsn/b-2.xsd"/>

 </xsd:schema>

 </wsdl:types>

<!-- ================ NotificationConsumer::Notify ================

 Notify(

 NotificationMessage

 (SubscriptionReference, TopicExpression, ProducerReference,

 Message)*

 returns: n/a (one way)

-->

 <wsdl:message name="Notify">

 <wsdl:part name="Notify" element="wsnt:Notify"/>

 </wsdl:message>

<!-- ========== PullPoint::GetMessages ===========

 GetMessages(MaximumNumber)

 returns: NotificationMessage list

-->

 <wsdl:message name="GetMessagesRequest">

 <wsdl:part name="GetMessagesRequest"

 element="wsnt:GetMessages"/>

 </wsdl:message>

 <wsdl:message name="GetMessagesResponse">

 <wsdl:part name="GetMessagesResponse"

 element="wsnt:GetMessagesResponse"/>

 </wsdl:message>

 <wsdl:message name="UnableToGetMessagesFault">

 <wsdl:part name="UnableToGetMessagesFault"

 element="wsnt:UnableToGetMessagesFault"/>

 </wsdl:message>

<!-- =================== PortType Definitions ===================== -->

<!-- ========= NotificationConsumer PortType Definition =========== -->

 <wsdl:portType name="NotificationConsumer">

 <wsdl:operation name="Notify">

 <wsdl:input message="wsntw:Notify" />

 </wsdl:operation>

 </wsdl:portType>

<!-- ========== PullPoint PortType Definition ===================== -->

 <wsdl:portType name="PullPoint">

 <wsdl:operation name="GetMessages">

 <wsdl:input name="GetMessagesRequest"

 message="wsntw:GetMessagesRequest" />

 <wsdl:output name="GetMessagesResponse"

 message="wsntw:GetMessagesResponse" />

 <wsdl:fault name="ResourceUnknownFault"

 message="wsrf-rw:ResourceUnknownFault" />

 <wsdl:fault name="UnableToGetMessagesFault"

 message="wsntw:UnableToGetMessagesFault" />

 </wsdl:operation>

</wsdl:definitions>
Appendix B: WSDL for Market Requests

This WSDL uses a set of operations for servicing all market requests, related to bidding information requests and alert acknowledgements.

<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:tns="http://www.ercot.com/wsdl/nodal/2006-12"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

xmlns:ns="http://www.ercot.com/wsdl/nodal/2006-12"

xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"

xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"

xmlns:mms="http://www.ercot.com/schema/2006-12/MMS-ERCOT.xsd"

name="Nodal"

targetNamespace="http://www.ercot.com/wsdl/nodal/2006-12">

<wsdl:types>

 <xsd:schema>

 <xsd:import namespace="http://www.ercot.com/schema/2006-12/ERCOT.xsd"

 schemaLocation="ERCOT.xsd" />

 </xsd:schema>

<xsd:schema targetNamespace="http://www.ercot.com/wsdl/nodal/2006-12">

<xsd:element name="Request">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="StartTime" type="xsd:string" minOccurs="0"/>

<xsd:element name="EndTime" type="xsd:string" minOccurs="0"/>

<xsd:element name="ID" type="xsd:string" minOccurs="0"/>

<xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="Reply">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="ReplyCode" type="xsd:string"/>

<xsd:element name="ReplyText" type="xsd:string" minOccurs="0"/>

<xsd:element name="ID" type="xsd:string" minOccurs="0"/>

<xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="Payload">

<xsd:complexType>

<xsd:choice>

<xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="Document" type="xsd:string" minOccurs="0" maxOccurs="unbounded"/>

<xsd:element name="Compressed" type="xsd:string" minOccurs="0"/>

<xsd:element name="BidSet" type="mms:BidSet" minOccurs="0"/>

</xsd:choice>

</xsd:complexType>

</xsd:element>

<xsd:element name="ReplayDetection">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Nonce" type="wsse:Nonce"/>

<xsd:element name="Created" type="wsu:Created"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="Header">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="Verb" default="get">

<xsd:simpleType>

<xsd:restriction base="xsd:string">

<xsd:enumeration value="cancel"/>

<xsd:enumeration value="canceled"/>

<xsd:enumeration value="change"/>

<xsd:enumeration value="changed"/>

<xsd:enumeration value="create"/>

<xsd:enumeration value="created"/>

<xsd:enumeration value="close"/>

<xsd:enumeration value="closed"/>

<xsd:enumeration value="delete"/>

<xsd:enumeration value="deleted"/>

<xsd:enumeration value="get"/>

<xsd:enumeration value="reply"/>

<xsd:enumeration value="submit"/>

</xsd:restriction>

</xsd:simpleType>

</xsd:element>

<xsd:element name="Noun" type="xsd:string"/>

<xsd:element ref="tns:ReplayDetection"/>

<xsd:element name="Revision" type="xsd:string" default="001"/>

<xsd:element name="Source" type="xsd:string"/>

<xsd:element name="UserID" type="xsd:string" minOccurs="0"/>

<xsd:element name="MessageID" type="xsd:string" minOccurs="0"/>

<xsd:element name="Comment" type="xsd:string" minOccurs="0"/>

<xsd:any namespace="##other" minOccurs="0" maxOccurs="unbounded"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="Message">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="tns:Header"/>

<xsd:choice>

<xsd:element ref="tns:Request" minOccurs="0"/>

<xsd:element ref="tns:Reply" minOccurs="0"/>

</xsd:choice>

<xsd:element ref="tns:Payload" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="RequestMessage">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="tns:Header"/>

<xsd:element ref="tns:Request" minOccurs="0"/>

<xsd:element ref="tns:Payload" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name="ResponseMessage">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="tns:Header"/>

<xsd:element ref="tns:Reply"/>

<xsd:element ref="tns:Payload" minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:schema>

</wsdl:types>

<wsdl:message name="Request">

<wsdl:part name="Message" element="ns:RequestMessage"/>

</wsdl:message>

<wsdl:message name="Response">

<wsdl:part name="Message" element="ns:ResponseMessage"/>

</wsdl:message>

<wsdl:portType name="Nodal">

<wsdl:operation name="MarketTransactions">

<wsdl:input message="tns:Request"/>

<wsdl:output message="tns:Response"/>

</wsdl:operation>

<wsdl:operation name="MarketInfo">

<wsdl:input message="tns:Request"/>

<wsdl:output message="tns:Response"/>

</wsdl:operation>

<wsdl:operation name="Alerts">

<wsdl:input message="tns:Request"/>

<wsdl:output message="tns:Response"/>

</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="NodalSOAP" type="tns:Nodal">

<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operation name="MarketTransactions">

<soap:operation soapAction="http://www.ercot.com/Nodal/MarketTransactions"/>

<wsdl:input>

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output>

<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="MarketInfo">

<soap:operation soapAction="http://www.ercot.com/Nodal/MarketInfo"/>

<wsdl:input>

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output>

<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="Alerts">

<soap:operation soapAction="http://www.ercot.com/Nodal/Alerts"/>

<wsdl:input>

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output>

<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name="Nodal">

<wsdl:port name="NodalSOAP" binding="tns:NodalSOAP">

<soap:address location="http://www.ercot.com/Nodal/"/>

</wsdl:port>

</wsdl:service>

</wsdl:definitions>

Appendix C: XML Schemas for Payload Definitions

The following XML schema provides examples for the definition of structures for payload definitions. The focus of the examples provided here are for bids, offers and ERCOT notifications. The examples provide here should be extended with valid enumerations and defaults in some cases. This XML schema is referenced by the preceding WSDL definition.

<?xml version="1.0" encoding="UTF-8"?>

<!-- edited with XMLSpy v2007 sp1 (http://www.altova.com) by Scott Neumann (UISOL) -->

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:complexType name="MarketRequest">

<xs:annotation>

<xs:documentation>Market common request parameters</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="marketType"/>

<xs:element name="tradingDate"/>

<xs:element name="participant"/>

<xs:element name="userId"/>

<xs:element name="status" minOccurs="0"/>

<xs:element name="mode" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="BidPriceCurve">

<xs:annotation>

<xs:documentation>Relationship between a price in $/hour (Y-axis) and a MW value (X-axis). </xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="startTime" minOccurs="0"/>

<xs:element name="endTime" minOccurs="0"/>

<xs:element name="CurveData" maxOccurs="unbounded">

<xs:complexType>

<xs:annotation>

<xs:documentation>The point data values that define a curve</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="xvalue" type="xs:float">

<xs:annotation>

<xs:documentation>The data value of the X-axis variable, depending on the X-axis units</xs:documentation>

</xs:annotation>

</xs:element>

<xs:element name="y1value" type="xs:float">

<xs:annotation>

<xs:documentation>The data value of the first Y-axis variable, depending on the Y-axis units</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="xUnit" type="xs:string" minOccurs="0"/>

<xs:element name="y1Unit" type="xs:string" minOccurs="0">

<xs:annotation>

<xs:documentation>The Y1-axis units of measure.</xs:documentation>

</xs:annotation>

</xs:element>

</xs:sequence>

</xs:complexType>

<xs:complexType name="BidSet">

<xs:annotation>

<xs:documentation>CIM container class for bids and offers</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="MarketRequest">

<xs:sequence>

<xs:element name="ASTrade" type="ASTrade" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="CapacityTrade" type="CapacityTrade" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="COP" type="COP" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="EnergyBid" type="EnergyBid" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="EnergyOffer" type="EnergyOffer" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="EnergyTrade" type="EnergyTrade" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="IncDecOffer" type="IncDecOffer" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="OutputSchedule" type="OutputSchedule" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="ThreePartOffer" type="ThreePartOffer" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="SelfArrangedAS" type="SelfArrangedAS" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="SelfSchedule" type="SelfSchedule" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="FipFop">

<xs:annotation>

<xs:documentation>FIP FOP percentages</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="fipPercent" type="xs:float" minOccurs="0"/>

<xs:element name="fopPercent" type="xs:float" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="StartupCost">

<xs:annotation>

<xs:documentation>Resource startup costs</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="startTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="endTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="hot" type="xs:float" minOccurs="0"/>

<xs:element name="intermediate" type="xs:float" minOccurs="0"/>

<xs:element name="cold" type="xs:float" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="ResourceStatus">

<xs:annotation>

<xs:documentation>Resource Status </xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="startTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="endTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="operatingMode"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Limits">

<xs:annotation>

<xs:documentation>Resource Limits</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="startTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="endTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="maximumEconomicMW" type="xs:integer"/>

<xs:element name="minimumEconomicMW" type="xs:integer"/>

<xs:element name="maxEmergencyMW" type="xs:integer"/>

<xs:element name="minEmergencyMW" type="xs:integer"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="ASCapacity">

<xs:annotation>

<xs:documentation>Ancillary Services Capacity</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="startTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="endTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="regUp" type="xs:integer" minOccurs="0"/>

<xs:element name="regDown" type="xs:integer" minOccurs="0"/>

<xs:element name="rrs" type="xs:integer" minOccurs="0"/>

<xs:element name="nonSpin" type="xs:integer" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="ThreePartOffer">

<xs:annotation>

<xs:documentation>Three Part Offer</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Offer">

<xs:sequence>

<xs:element name="resource"/>

<xs:element name="combinedCycle" minOccurs="0"/>

<xs:element name="FipFop" type="FipFop" minOccurs="0"/>

<xs:element name="StartupCost" type="StartupCost" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="MinimumGeneration" type="PriceSchedule" minOccurs="0"/>

<xs:element name="BidPriceCurve" type="BidPriceCurve" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="COP">

<xs:annotation>

<xs:documentation>Current Operating Plan (should consider adaptation of CIM GenUnitOpSchedule)</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="resource"/>

<xs:element name="ResourceStatus" type="ResourceStatus" maxOccurs="unbounded"/>

<xs:element name="Limits" type="Limits" maxOccurs="unbounded"/>

<xs:element name="ASCapacity" type="ASCapacity" maxOccurs="unbounded"/>

<xs:element name="error" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="IncDecOffer">

<xs:annotation>

<xs:documentation>Incremental Decremental Offer</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Offer">

<xs:sequence>

<xs:element name="resource"/>

<xs:element name="combinedCycle" minOccurs="0"/>

<xs:element name="FipFop" type="FipFop" minOccurs="0"/>

<xs:element name="BidPriceCurve" type="BidPriceCurve" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="EnergyBid">

<xs:annotation>

<xs:documentation>Energy Bid</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Bid">

<xs:sequence>

<xs:element name="resource"/>

<xs:element name="bidID"/>

<xs:element name="startDate" type="xs:date" minOccurs="0"/>

<xs:element name="expirationTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="BidPriceCurve" type="BidPriceCurve" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="EnergyOffer">

<xs:annotation>

<xs:documentation>Energy Offer</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Offer">

<xs:sequence>

<xs:element name="resource"/>

<xs:element name="bidID"/>

<xs:element name="startDate" type="xs:date" minOccurs="0"/>

<xs:element name="BidPriceCurve" type="BidPriceCurve" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="EnergyTrade">

<xs:annotation>

<xs:documentation>Energy Trade</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Trade">

<xs:sequence>

<xs:element name="resource"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="CapacityTrade">

<xs:annotation>

<xs:documentation>Capacity Trade</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Trade"/>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="ASTrade">

<xs:annotation>

<xs:documentation>Ancillary Services Trade</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Trade">

<xs:sequence>

<xs:element name="asType"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="OutputSchedule">

<xs:annotation>

<xs:documentation>Output Schedule</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="resource"/>

<xs:element name="EnergySchedule" type="EnergySchedule" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Bid">

<xs:annotation>

<xs:documentation>CIM Bid class</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="startTime" type="xs:dateTime"/>

<xs:element name="endTime" type="xs:dateTime"/>

<xs:element name="marketType"/>

<xs:element name="status" minOccurs="0"/>

<xs:element name="error" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="Trade">

<xs:annotation>

<xs:documentation>Abstract class for trades</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Bid">

<xs:sequence>

<xs:element name="buyer"/>

<xs:element name="seller"/>

<xs:element name="tradeID"/>

<xs:element name="EnergySchedule" type="EnergySchedule" minOccurs="0"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="Offer">

<xs:annotation>

<xs:documentation>Abstrract class for offers</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Bid">

<xs:sequence>

<xs:element name="expirationTime" type="xs:dateTime" minOccurs="0"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="ASOffer">

<xs:annotation>

<xs:documentation>Ancillary Services Offer</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="Offer">

<xs:sequence>

<xs:element name="asType"/>

<xs:element name="indicator"/>

<xs:element name="BidPriceCurve" type="BidPriceCurve" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="SelfArrangedAS">

<xs:annotation>

<xs:documentation>Self-Arranged Ancillary Services</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="asType"/>

<xs:element name="startTime" type="xs:dateTime"/>

<xs:element name="endTime" type="xs:dateTime"/>

<xs:element name="status" minOccurs="0"/>

<xs:element name="error" minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="EnergySchedule" type="EnergySchedule" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="SelfSchedule">

<xs:annotation>

<xs:documentation>Self schedules</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="resource"/>

<xs:element name="source"/>

<xs:element name="sink"/>

<xs:element name="EnergySchedule" type="EnergySchedule" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="LoadForecast">

<xs:annotation>

<xs:documentation>Forecasted load: value1Unit is MW</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="IrregularIntervalSchedule"/>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="CRR">

<xs:annotation>

<xs:documentation>Congestion Revenue Rights</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="crrID"/>

<xs:element name="source"/>

<xs:element name="sink"/>

<xs:element name="EnergySchedule" type="EnergySchedule" minOccurs="0"/>

<xs:element name="minReservationPrice" type="PriceSchedule" minOccurs="0"/>

<xs:element name="PeakLoadForecast" type="LoadForecast" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="PTPObligation">

<xs:annotation>

<xs:documentation>PTP Obligation</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="source"/>

<xs:element name="sink"/>

<xs:element name="bidID"/>

<xs:element name="expirationTime" type="xs:dateTime" minOccurs="0"/>

<xs:element name="EnergySchedule" type="EnergySchedule" minOccurs="0"/>

<xs:element name="MaximumPrice" type="PriceSchedule" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="DCTieSchedule">

<xs:annotation>

<xs:documentation>DC Tie Schedule</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="resource"/>

<xs:element name="buyer"/>

<xs:element name="EnergySchedule" type="EnergySchedule" minOccurs="0"/>

<xs:element name="NERCTags" type="NERCTags" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="NERCTags">

<xs:annotation>

<xs:documentation>NERC Tags</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="startTime" type="xs:dateTime"/>

<xs:element name="endTime" type="xs:dateTime"/>

<xs:element name="tag" type="xs:string"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="BasicIntervalSchedule">

<xs:annotation>

<xs:documentation>CIM Basic Interval Schedule</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="startTime" type="xs:dateTime"/>

<xs:element name="value1Unit" minOccurs="0"/>

<xs:element name="value2Unit" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="IrregularIntervalSchedule">

<xs:annotation>

<xs:documentation>CIM Irregular Interval Schedule</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="BasicIntervalSchedule">

<xs:sequence>

<xs:element name="IrregularTimePoint" type="IrregularTimePoint" maxOccurs="unbounded"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="EnergySchedule">

<xs:annotation>

<xs:documentation>MW Schedules: value1Unit is MW</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="IrregularIntervalSchedule"/>

</xs:complexContent>

</xs:complexType>

<xs:complexType name="IrregularTimePoint">

<xs:annotation>

<xs:documentation>CIM Irregular Time Point</xs:documentation>

</xs:annotation>

<xs:sequence>

<xs:element name="time" type="xs:integer"/>

<xs:element name="value1" type="xs:float"/>

<xs:element name="value2" type="xs:float" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:complexType name="PriceSchedule">

<xs:annotation>

<xs:documentation>Price Schedules: value1Unit is $/MW</xs:documentation>

</xs:annotation>

<xs:complexContent>

<xs:extension base="IrregularIntervalSchedule"/>

</xs:complexContent>

</xs:complexType>

<xs:element name="ASOffer" type="ASOffer"/>

<xs:element name="ThreePartOffer" type="ThreePartOffer"/>

<xs:element name="SelfSchedule" type="SelfSchedule"/>

<xs:element name="BidSet" type="BidSet"/>

<xs:complexType name="Notification">

<xs:sequence>

<xs:element name="notificationID"/>

<xs:element name="notificationType"/>

<xs:element name="priority"/>

<xs:element name="source"/>

<xs:element name="issued" type="xs:dateTime"/>

<xs:element name="expiration" type="xs:dateTime" minOccurs="0"/>

<xs:element name="summary"/>

<xs:element name="details" minOccurs="0"/>

<xs:element name="objectID" minOccurs="0"/>

<xs:element name="referenceURL" minOccurs="0"/>

<xs:any namespace="##other" minOccurs="0"/>

</xs:sequence>

</xs:complexType>

<xs:element name="Notification" type="Notification"/>

</xs:schema>

Appendix D: Sample Code for Signing a SOAP Message

The purpose of this appendix is to provide examples for signing SOAP messages.

J2EE
Java Cryptography Architecture Example
import java.security.*;

...

// generate new RSA keypair

KeyPairGenerator k =

KeyPairGenerator.getInstance(“RSA”);

KeyPair kp = k.generateKeyPair();

// sign data

Signature s =

Signature.getInstance("SHA1withRSA");

s.initSign(kp.getPrivate());

byte[] signature = s.sign(data);

.NET

public static string ClientBase64KeyID = "ODytWwSUPj9/uGbXZTAdEhhzxLE=";

public void CallWebService()

{

 PDCRegistrationProxy proxy = new PDCRegistrationProxy();

 SoapContext requestContext = proxy.RequestSoapContext;

 X509SecurityToken token = GetSigningToken(); //private–keystore

 SignupRequest request = new SignupRequest();

 request.Name = "Utility Integration Solutions";

 request.Address = ERCOT, Taylor, TX";

 requestContext.Security.Tokens.Add(token);

 requestContext.Security.Elements.Add(new Signature(token));

 SignupResponse response = proxy.SignupForPDC(request);

 ….

Appendix E: Annotated SOAP Message

An annotated example of a SOAP message follows, which includes the required security elements. The example is divided into sections and marked by a number, e.g. 1(. Following the SOAP message are explanatory notes describing each numbered section. In order to improve readability, some attributes that have URI values have been shortened.

The example does not include any namespace declarations. The table below lists the namespaces used in this example.

	Prefix
	Description
	Namespace

	SOAP-ENV
	SOAP Envelop
	http://schemas.xmlsoap.org/soap/envelope/

	ds
	XML Digital Signature
	http://www.w3.org/2000/09/xmldsig#

	wsse
	Web Service Security Extensions
	http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd

	wsu
	Web Services Security Utility
	http://www.docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd

	xsd
	XML Schema
	http://www.w3.org/2001/XMLSchema

	msg
	An private namespace for specifying elements and attributes that are specific to ERCOT Web Services
	TBD

1(
<SOAP-ENV:Envelope ">
 <SOAP-ENV:Header ">
2(
 <wsse:Security SOAP-ENV:mustUnderstand="1">
 <wsse:BinarySecurityToken

EncodingType="…#Base64Binary"

 ValueType="…#X509v3"

 wsu:Id="CertId-1776694">

MIIDDDCCAfSgAwIBAgIQM6YEf7FVYx/tZyEXgVComTANBgkqhkiG9w0 DAVPQVNJUzEeMBwGA1UEAwwVT0FTSVMgSW50ZXJvcCBUZXN0IENBMB4DTE4MDMxOTIzNTk1OVowQjEOMAwGA1UECgwFT0FTSVMxIDAeBgNVBAsVGVzdCBDZXJ0MQ4wDAYDVQQDDAVBbGljZTCBnzANBgkqhkiG9w0BAQE9By1VYo0aHrkKCNT4DkIgPL/SgahbeKdGhrbu3K2XG7arfD9tqIBIKMyvq+mUnMpNcKnLXLOjkTmMCqDYbbkehJlXPnaWLzve+mW0pJdPxtf3r sZKT8DN5Kyz+EZsCAwEAAaOBkzCBkDAJBgNVHRMEAjAAMDMGA1UdHwQaW50ZXJvcC5iYnRlc3QubmV0L2NybC9jYS5jcmwwDgYDVR0PAQH/BAQ4l0TUHZ1QV3V2QtlLNDm+PoxiDAfBgNVHSMEGDAWgBTAnSj8wes1oR3 JTw==

 </wsse:BinarySecurityToken>

3(
<ds:Signature>
 <ds:SignedInfo>
 <ds:CanonicalizationMethod

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

 <ds:SignatureMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1" />

4(
<ds:Reference URI="#id-1464350">
 <ds:Transforms>
 <ds:Transform

 Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#" />

 </ds:Transforms>
 <ds:DigestMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

 <ds:DigestValue">

 1JmC1C0FrlPB42xfFKolgaCew5k=

 </ds:DigestValue>

 </ds:Reference>

5(
 <ds:Reference URI="#STRId-13498124">

<ds:Transforms>
 <ds:Transform

 Algorithm="…#STR-Transform" />

 <wsse:TransformationParameters">

<ds:CanonicalizationMethod

Algorithm="...xml-exc-c14n#"/>

 </wsse:TransformationParameters>

 </ds:Transform>

</ds:Transforms>
 <ds:DigestMethod

 Algorithm="http://www.w3.org/2000/09/xmldsig#sha1" />

 <ds:DigestValue>

 sEaCJjrObpDVfM8zuabwQdBGKbY=

 </ds:DigestValue>
 </ds:Reference>

6(
 </ds:SignedInfo>
 <ds:SignatureValue">

H1b7jH2bHpbrzJXkFS0msdUYycDMH4n6m4oTRtbo4Yk35/JzGcuwUYZ3

AwPcnqmcP5ROshjJparaPGuvQhbFR7zCxet2aoawJFWgG8jIeuDZDE8y6n+kbBzxadF2tGN8/nH6IlKg0+onD09i81rPHDAa 2kstCclX2NDet1Rnmfs=

 </ds:SignatureValue>

7(
<ds:KeyInfo>
 <wsse:SecurityTokenReference wsu:Id="STRId-13498124">
 <wsse:Reference URI="#CertId-1776694" ValueType="…#X509v3" />
 </wsse:SecurityTokenReference>
</ds:KeyInfo>
 </ds:Signature>
 </wsse:Security>
 </SOAP-ENV:Header>

8(
 <SOAP-ENV:Body wsu:Id="id-1464350" >

<msg:Message>

<msg:Header>

<msg:Verb>verb</msg:Verb>

<msg:Noun>noun</msg:Noun>

 <msg:ReplayDetection>

<wsu:Created>

2006-11-29T20:05:55.022Z

</wsu:Created>

<wsse:Nonce EncodingType="…#Base64Binary">

75753793-50c2-455b-a9b3-123cb26474e7

</wsse:Nonce>
 </msg:ReplayDetection>

<msg:Revision>1</msg:Revision>

<msg:Source>market participant ID</msg:Source>

</msg:Header>

.

.

.

</msg:Message>
 </SOAP-ENV:Body>
 </SOAP-ENV:Envelope>
1(
This section starts the SOAP envelope and the SOAP header

2(
This section starts the Web Services Security Extensions, which includes security tokens and the digital signature. The first element in this section is the signer’s X.509 certificate, which is encoded in Base 64 binary. Note the identification of this element (CertId-1776694). The ID is later used in section 7(to reference this certificate. Note that there is only one certificate in this message. The message verifier must ensure that the certificate chains to a trusted root.

3(
This section starts the digital signature block of the SOAP message. The signature is computed using the SHA-1 hash algorithm with RSA encryption.

4(
This section designates the first of two objects that are signed. This one points to the entire message body (#id-1464350), which is specified in section 8(. The hashing algorithm is SHA-1.

5(
This section designates the second of two objects that are signed. This one points to the reference to the certificate (#STRId-13498124), which is specified in section 7(.

6(
This section specifies the value of the signature. That is, the SHA-1 hash of references to sections 7(and 8(and the encryption of this hash using the signer’s private key.

7(
This section designates a reference to the signer’s certificate. In this case, the certificate is embedded in this SOAP message, and is referenced via the ID #CertId-1776694. This ID instructs the message verifier to get the certificate from section 2(of this SOAP message.

8(
This section starts the SOAP message body. It is designated using ID id-1464350, which is referenced as a signed element in section 2(. Note that the message body includes an element called ReplayDetection, which consists of a timestamp indicating when the message was signed and a unique number (the nonce). These two elements help detect and prevent replay attacks. The rest of the message body (i.e., the business transaction) is not shown.

[image: image18.emf]

P - 1

[image: image19.emf]

P - 2

	© 2006 Electric Reliability Council of Texas, Inc.
	Texas Nodal

© 2006 Electric Reliability Council of Texas, Inc. All rights reserved.

