MIS Web Services

[image: image7.emf]Bind

(SOAP)

Service

Registry

Service

Provider

Publish

(WSDL)

Service

Requestor

Bind

(SOAP)

Publish

Find

Texas Nodal Market

Web Services API
Version 0.91
Revision History
	Date
	Version
	Description
	Author(s)

	10/16/2006
	.91
	
	Balaji Krishnaswamy

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

Reference Documents

Table of Contents

21.
Background

32.
Issues with current API solution

43.
Proposed Solution

43.1.
Overview of Web Services

53.2.
Protocols and Standards

63.3.
Actors in a Web Service

63.4.
Web Service Roles and Operations

73.5.
Web Services in Action

84.
Advantages/Impacts of Web Services on Nodal Environment

95.
MIS Adoption of Web Services

96.
Benefits of Web Services to Market Participants

107.
Sample list of Web Services

117.1.
Use Case

117.2.
Operation Details

117.3.
WSDL Definition

147.4.
Sample Web Service SOAP Request

157.5.
Sample Web Service SOAP Response

168.
FAQ’s

1. Background

ERCOT’s market information delivery solution is primary composed two communication channels, the Enterprise Portal and the Services API. Each of these communication channels is dedicated for a specific purpose in the content delivery area. The enterprise portal is primary geared towards serving Market Participant users while the API model has been put in place to provide for a system to system communication framework. The API communication model augments the functionality supported by the enterprise portal by providing additional avenue to access market information data.

[image: image2.emf]TML PORTAL

Web Services

API

Market Information

Applications/Data Store

Market Participant User

Market Participant System

Data Request

GUI FrontEnd

Data Request

XML/HTTP

 The goal of this document is to address some of the issues surrounding the current implementation of the API layer and propose a solution to overcome the shortcoming of this approach. The scope of this document is restricted to the Web Services API delivery channel and does not address any issues pertaining to the enterprise portal in place.
2. Issues with current API solution
The current API framework has the following shortcomings:

· Partial adaptation of standards (XML/HTTP): Does not support the use of WSDL and SOAP protocols as called for in the Web Services standards protocol.
· Rudimentary methods for new service discovery: The current approach does not provide a centralized repository where market participants can query for service information and lookup definitions associated with those services. Service discovery is enabled through the use email messages.
· Tight coupling of operation definitions and message definition
· Limited Content Delivery: Currently there is a limited set of content that is delivered via the API layer.
3. Proposed Solution
To overcome shortcoming surrounding the current API approach, the MIS project proposes a complete adoption of the Web Services model for system to system content delivery. The following sections provide some background information surrounding Web Services, benefits gained by adopting this standard and how MIS plans to fulfill the system to system communication requirement.
3.1. Overview of Web Services
Web services are the building blocks in the Services Oriented Architecture. Web Services provide a language-neutral, environment-neutral programming model that accelerates application integration and should enable Market Participant system integration in a faster, less expensive fashion. Web Services are identified by a URL in which public interfaces and bindings are defined and described using eXtensible Markup Language (XML), which can be discovered by other software systems and uses XML-based messaging for interacting with the service subscribers.

Because Web Services are easily applied as a wrappering technology around existing applications and information technology assets, new solutions can be deployed quickly and recomposed to address new opportunities.

The following diagram provides a high level view of Web Services architecture. It illustrates the interaction between Web Services Consumer and the Web Services Provider. The service consumer and provider communicate messages that are typically enveloped in SOAP over HTTP.

[image: image3.emf]Web Services

Directory

Web Services

Provider

Web Services

Consumer

Web

Services

Publish

(WSDL)

Secure Manage

Access

Locate

(SOAP/HTTP)

3.2. Protocols and Standards
	Protocol
	Description
	Notes

	SOAP
	Simple Object Access Protocol
	SOAP is an XML based markup language. The core protocol underlying Web Services, SOAP defines a standard message format for carrying data objects. Depending on the rules of how its contents should be serialized, the body of a SOAP document contains one or more objects to be consumed by the receiving application. The root of a SOAP message is an "envelope" in which a developer can place the XML representation of these objects. Like an envelope sent through the neighborhood post office, the SOAP envelope can also contain routing, state and security information. These are placed in one or more headers.

Web Services can handle SOAP messages in two different ways. In their simplest form they wrap function arguments and return values. In this way they act as the bonding element for RPC mechanisms. The second approach is to treat a SOAP message as a one-way document containing information to be handled by a service with the response message optional

	XML
	Extensible Markup Language
	The most fundamental element of Web Service technologies is XML. In broad terms XML is a text based human interpretable way to represent data and data structures using a subset of the Structured General Markup Language (SGML). Web Services use XML to describe application class interfaces and to encode messages

	Directory
	Services Discovery Directory
	Provides a standard mechanism for publishing and discovering Web Service descriptions. It provides the meta-information needed to decide which service an application should use and where it can be found. Registry then provides pointers to WSDL documents that describe services and one or more implementations a client might choose to access. Seeing as service locations and implementations may change over time due to issues such as load balancing, maintenance and versioning,

	WSDL
	Web Services Definition Language
	WSDL is an XML based markup language used to describe and define Web Services. A WSDL document makes public the "What, How, and Where" of your Web Service. It describes what the Web Service does, how it communicates, and where it resides. A client application developer uses the WSDL document at development-time to generate data types to be placed in SOAP messages, and service interface stubs which are then compiled into the application.

	HTTPS
	Hyper Text Transfer Protocol
	

3.3. Actors in a Web Service
	Role
	Description

	Service Providers
	Provides e-business services

Publishes availability of these services through a registry

	Service Consumer
	Locates required services via the Service Registry

Binds to services via a service provider

	Registry Providers
	Provides support for publishing and locating services, like telephone yellow pages

3.4. Web Service Roles and Operations
The Web Services architecture sets forth three roles and three operations. The three roles are the service provider, the service requester, and the service registry. The objects acted upon are the service and the service description, and the operations performed by the actors on these objects are publish, find, and bind.
[image: image1.png]

3.5. Web Services in Action

In terms of systems and processes, the basis of Web Services is the runtime server. A runtime server provides a Web Services container that processes messages, dispatches them to the correct service application and implements security policies. A runtime server can operate as a standalone application, or can run within existing transport servers, such as IIS, iPlanet and Apache.

[image: image4.emf]WSDL

SOAP

PROCESSOR

WS

CONTAINER

WebServices Server

Register Service

Market Participant Server

Invoke Service Request

(SOAP/HTTPS)

WSDL

Enterprise

Applications/

Data Stores

LookupService

1

2

3

4

5

6

Service Response

(SOAP)

Web Server/Application Server

ERCOT DOMAIN

Forware Req/

Receive Resp

Get App

Data

Service

Directory

4. Advantages/Impacts of Web Services on Nodal Environment
Because Web Services use the existing Internet Protocols, and because they rely on XML, they are vendor, platform, and language-independent. Internet-based protocols support universal communications. Web Services rely on XML for describing connections and packaging their data. Taken together, the IP and XML factors mean that service applications can be uncoupled from transports, operating systems, release versions, language, legacy architectures, and development platforms.
· Interoperability - This is the most important benefit of Web Services. Web Services typically work outside of private networks, offering developers a non-proprietary route to their solutions. Services developed are likely, therefore, to have a longer life-span, offering better return on investment of the developed service. Web Services also let developers use their preferred programming languages. In addition, the use of standards-based communications methods, Web Services are virtually platform-independent.

Impact on Nodal Environment: Provides a standardized format for all system to system interactions with market participant systems. Existing system functionality can be easily wrapped in a web service and provided as a consumable service to market participants. Better degree of adoption by market participants as the solution is complete standards based.
· Usability - Web Services allow the business logic of many different systems to be communicated over the Web. This gives applications the freedom to choose the Web Service(s) that they need. Instead of re-inventing the wheel for each client, you need only include additional application-specific business logic on the client-side. This allows you to develop services and/or client-side code using the languages and tools that you want.
Impact on Nodal Environment: Effect on individual market participant system is predictable and can be managed as resources are available to accept and manipulate the Web Service.

· Reusability - Web Services provide not only a component-based model of application development, but also the possibility of zero-coding deployment of such services. This makes it easy to reuse Web Service components as appropriate in other services. It also makes it easy to deploy legacy code as a Web Service.
Impact on Nodal Environment: Requirement for repeated market participant system enhancement is lessened through a standard Web Service definition and new services can be quickly assembled and made available to market participants

· Deployability - Web Services are deployed over standard Internet technologies. This makes it possible to deploy Web Services even over firewalls to servers running on the Internet.
Impact on Nodal Environment: Provides Nodal Market Participants with a centralized point for service discovery for market participants. Provides higher degree of security to EROCT infrastructure as Web Services can operate on standards communication ports. .
5. MIS Adoption of Web Services
MIS intends to strengthen its current content delivery solution by fully embracing the protocols surrounding the Web Services standards. This will ensure Market Participants’ systems are not tightly coupled to ERCOT implementation of services. In order to fulfill this objective, MIS intends to embrace Web Services on multiple fronts:
· Service enabling (providing standards-based interface) for all MIS functionality that are available via the MIS Portal
· Service enabling the underlying application providing data to the MIS Portal

· Adopt WSDL protocol for defining services.
· Utilize Registry services to announce availability and updates to services.
6. Benefits of Web Services to Market Participants

By service enabling the content delivery process in the MIS system, we anticipate the following benefit to the end Market Participant users:
· Market Participants do not have to resort to screen-scraping technologies to extract market information. As MIS functionality becomes available via a service, the Market Participant’s system can directly access machine interpretable data rather than interpret data that is primarily intended for human consumption.
· Adoption of standards will clear ambiguities surrounding the service definition process. Service definition will provide a standard way to interpret the operations and the associated messages supported by that service.
· Decoupling of interface definition from implementation will ensure minimal impact on Market Participant systems when there is underlying technological changes on the ERCOT side.
· Service enabling underlying support applications will result in rapid development and deployment of new services as the market requires.
· Adoption of Web Services by ERCOT will provide Market Participant information technology divisions with a wider collection of COTS packages to implement their client interfaces.
· Offers a simple, standardized mechanism to describe, locate, and establish communication between online applications

· Enables organizations to communicate on a process or application level with ERCOT, evolving to an on demand model, where all data requests can be modeled by Market Participants.
7. Sample list of Web Services
The following table provides a sample set of functionality that might be supported via the Web Services framework.
	Systems
	Functionality Supported via a Web Services

	Congestion Revenue Rights
	Historical Forecast

Portfolio Submission

Auction/Allocation Results

	Outage Management
	Trans/Gen Outage

Schedule Outages

	Settlements
	Invoice and Payment File
Pass Thru Billing Data File

	Bidding
	Raw Bid Submission
Bid Results

Clean Bid Submission

	Market Results
	Default Bid Curves

Market Awards

7.1. Use Case
The following use case diagram (as an example) shows the sequence for retrieving the Historical Forecast information from the MIS system via a Web Services call.

[image: image5.emf]Market Participant

MIS CRR

REQ HISTORICAL FORECAST

GET HISTORICAL FORECAST

RECEIVE HISTORICAL FORECAST

RESP HISTORICAL FORECAST INFO

7.2. Operation Details

The Historical Forecast service has one operation with multiple messages types. All messages are in XML format.

	Operation
	Message Type
	Message
	WSDL
	XSD

	retrieveHistoricalForecast
	input
	
	RetrieveHistoricalForecast.wsdl
	RequestHeader.xsd
RequestDetails.xsd

	
	Output
	
	
	Response.xsd

	
	Fault
	
	
	Fault.xsd

7.3. WSDL Definition

	<?xml version="1.0" encoding="utf-8"?>

 <wsdl:definitions

 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

 targetNamespace="http://www.ercot.com/mis/2006/retrieveHistoricalForect.wsdl"

 xmlns:tns="http://www.ercot.com/mis/2006/retrieveHistoricalForect.wsdl"

 xmlns:typeHeader="http://www.ercot.com/mis/2006/StandardAttachmentInfor.xsd"

 xmlns:typeFault="http://www.ercot.com/mis/2006/StandardOutput.xsd">

 <wsdl:documentation>

 Web Service for retrieving Historical Forecast from the MIS system

 </wsdl:documentation>

 <!-- type elements define data types used in this wsdl document using xml schema -->

 <!-- note the namespaces defined matched up with the typeIn and typeOut defined above -->

 <wsdl:types>

 <schema xmlns="http://www.w3.org/2001/XMLSchema" xmlns:tns="http://www.ercot.com/xsd/2006/MISWebServices" targetNamespace="http://www.ercot.com/xsd/2006/MISWebServices" elementFormDefault="qualified" attributeFormDefault="unqualified">

 xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 elementFormDefault="qualified" >

</schema>

 </wsdl:types>

 <!-- message elements define input and output parameters -->

 <!-- a request and response case to use the data type defined in TYPE for payload -->

 <wsdl:message name="retrieveHistoricalForecastRequest">

 <wsdl:part name="requestHeader" type="typeIn:requestHeader">

 <wsdl:part name="requestDetails" type="typeIn:requestDetails">

 <wsdl:documentation>send historical forecast request</wsdl:documentation>

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="retrieveHistoricalForecastSetResponse">

 <wsdl:part name="responseContent" type="typeOut:attachmentResponse">

 <wsdl:documentation>return historical forecast data</wsdl:documentation>

 </wsdl:part>

 </wsdl:message>

 <wsdl:message name="faultReturnType">

 <wsdl:part name="faultReturn" element="typeFault:outputDataType">

 <wsdl:documentation>fault information</wsdl:documentation>

 </wsdl:part>

 </wsdl:message>

 <!-- portType elements define the abstract interface of a Web Service -->

 <!-- to use the message type defined in message above -->

 <wsdl:portType name="retrieveHistoricalForecast">

 <wsdl:operation name="retrieveHistoricalForecast">

 <wsdl:documentation>retrieve historical forecast information</wsdl:documentation>

 <wsdl:input message="tns:retrieveHistoricalForecastRequest" />

 <wsdl:output message="tns:retrieveHistoricalForecastResponse" />

 <wsdl:fault name="faultReturn" message="tns:faultReturnType" />

 </wsdl:operation>

 </wsdl:portType>

 <!-- binding elements define protocols and encoding styles -->

 <!-- to bind the operation defined in portType -->

<wsdl:binding name="retrieveHistoricalForecast_Binding" type="tns:Operations">

 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="retrieveHistoricalForecast">

 <soap:operation style="document" soapAction="/forecast/historical/getHistoricalInfo>

 <wsdl:input>

 <soap:body use="literal" parts="request"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" parts="response"/>

 </wsdl:output>

 <wsdl:fault name="fault">

 <soap:fault use="literal" name="fault"/>

 </wsdl:fault>

 </wsdl:operation>

 <wsdl:operation name="retrieveHistoricalForecast">

 <soap:operation style="document" soapAction="/forecast/historical/getHistoricalInfo>

 <wsdl:input>

 <soap:body use="literal" parts="request"/>

 </wsdl:input>

 <wsdl:output>

 <soap:body use="literal" parts="response"/>

 </wsdl:output>

 <wsdl:fault name="fault">

 <soap:fault use="literal" name="fault"/>

 </wsdl:fault>

 </wsdl:operation>

 </wsdl:binding>

 <wsdl:service name="retrieveHistoricalForectInfo">

<wsdl:port name="retrieveHistoricalForecast" binding="tns:retrieveHistoricalForectInfo_Binding">

<soap:address location="http://www.ercot.com/MIS/2006/forecast/getHistoricalForecast"/>

</wsdl:port>

 </wsdl:service>

 </wsdl:definitions>

7.4. Sample Web Service SOAP Request

	<soap:Envelope >

...

<soap:Body>

<requestHeader>

<DUNSNUM>123456789</DUNSNUM>

<EMPLOYEEID>1234</EMPLOYEEID>

<InforRequestType>LoadForecast</InforRequestType>

<InforClassfication>Historical</InforClassfication>

</requestHeader>

 <requestDetails>

 <ForecastStartDate>01012001</ForecastStartDate>

 <ForecastEndDate>01012003</ForecastEndDate>

 <ResponseMsgFormat>xls</ResponseMsgFormat>

</requestDetails>

</soap:Body>

</soap:Envelope>

7.5. Sample Web Service SOAP Response

	<?xml version="1.0"?>

<SOAP-ENV:Envelope

xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">

 <SOAP-ENV:Body>

 <HistoricalForecasetResponse

 <Forecast>

 <startDate>01012001</startDate>

<endDate>01152001</endDate>

<load>100</load>

 </Forecast>

 <Forecast>

 <startDate>01162001</startDate>

<endDate>01312001</endDate>

<load>100</load>

 </Forecast>

 <Forecast>

 <startDate>02012001</startDate>

<endDate>02152001</endDate>

<load>100</load>

 </Forecast>

 <Forecast>

 <startDate>02162001</startDate>

<endDate>02282001</endDate>

<load>100</load>

 </Forecast>

 </HistoricalForecastResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

8. FAQs

	Question
	Answers

	How much effort is required to adopt the Web Service paradigm?
	Web Services is a widely adopted standard and there are many tools readily available in the marketplace to build client interfaces to Web Services. We can provide suggestions if asked.

	
	

	What market application will be supported via Web Services API?
	The current goal is to support (at minimum) the following applications CRR, EMMS, OutageScheduler, Registration. More may be made available in time.

	
	

	Do I need to continue to screen scrape for information?
	No. The goal is to provide Web Services for all functionality that is delivered via the MIS portal. Once the complete solution is in place, there wouldn’t be a need for screen scraping at all.

	
	

	Are there other avenue for data downloads?
	RSS (Really Simple Syndication) is being considered as an option for MIS content delivery.

	
	

	Why is Web Services option better than API?
	The proposed solution is fully standards compliant and more efficiently responds to changing business needs. Please refer to Section 6.

	
	

	Where can I go for more information on Web Services?
	http://www.w3.org/2002/ws/

� EMBED Visio.Drawing.11 ���

PAGE
ii

23 October 2006

[image: image6.emf]Bind

(SOAP)

Service

Registry

Service

Provider

Publish

(WSDL)

Service

Requestor

Bind

(SOAP)

Publish

Find

_1222601324.vsd

_1222614690.vsd

_1222614667.vsd

_1222088441.vsd
95 User System Policies

Text

TML PORTAL

Web Services
API

Market Information
Applications/Data Store

Market Participant User

_1222508811.vsd

Market Participant

MIS

CRR

REQ HISTORICAL FORECAST

GET HISTORICAL FORECAST

RECEIVE HISTORICAL FORECAST

RESP HISTORICAL FORECAST INFO

