

Stimulating Economic Growth through Electric Energy R&D

Texas Consortium for Electric Energy- TxCEE

ERCOT TAC Meeting April 7, 2005

University members

Texas A&M University	M. Kezunovic
The University of Texas at Austin	R. Hebner, M. Grady
Texas A&M University - Kingsville	S. Lee
The University of Texas - Arlington	W. Lee
The University of Texas - El Paso	B. Dong (moved)
Texas Tech University	M. Giesselmann
University of Houston	C. Ovidiu, P. Chu

- Consortium of Texas Universities
- General Topics of Interest
- Proposed Research Topics
- Current university research (examples)
- Consortium expertise
- Q/A

Governor's Initiative

- Texas Emerging Technology Fund
- The Texas Technology Initiative (TTI)
 - State Strategy on Advanced Technology (SSAT)
 - Industry Cluster Initiative (ICI)
- Center for Advanced Energy Applications

- Consortium of Texas Universities
- General Topics of Interest
- Proposed Research Topics
- Current university research (examples)
- Consortium expertise
- Q/A

Consortium Timeline

Fall 2003	Initial university contacts		
Nov. 2004	First Texas Electric Energy Forum		
Nov. 2004	Formal University Consortium Initiative		
Jan. 2005	Confirmation of the present organization		
Feb. 2005	First meeting with stakeholders		

Investment and Return

- Consortium of Texas Universities
- General Topics of Interest
- Proposed Research Topics
- Current university research (examples)
- Consortium expertise
- Q/A

Source: Production and end-use data from Energy Information Administration, Annual Energy Review 2001 *Net fossil-fuel electrical imports **Includes 0.2 quads of imported hydro August 2003 Lawrence Livermore National Laboratory http://eed.lini.gov/flow

***Biomass/other includes wood, waste, alcohol, geothermal, solar, and wind,

Texas Energy (electricity) portfolio

TxCEE

Texas Electr. Demand by Sector in Trillion BTUs

Sector	2001	2025	%
			Change
Residential	613.95	824.98	34.37%
Commerc.I	564.15	789.98	40.03%
Industrial	5349.50	7137.23	33.42%

Technology	Existing MW (as of 9/1/99)	New MW (since 9/1/99)	Total MWh 2003 generation
Biomass	0	0	0
Hydro	105	10.2	239,683.7
Landfill gas	6.3	36.1	193,701.4
Solar	0	0.2	219.9
Wind	115.8	1139.7	2,515,482.2

Texas Energy Consumption

Biomass

Savings and improvements (Rand Corporation Study)

- Four examples of 20 year benefits from:
 - Reduced peak demand (\$16-80 Billion)
 - Active Load management (\$16 Billion)
 - Improved system reliability (\$ 50 Billion)
 - End-User Efficiency (\$20 Billion)
- Other cost-benefit areas:
 - integration of distributed energy resources
 - reduced emission and other environmental cost
 - increased energy security
 - greater public confidence
 - Productivity gains from high quality, reliable power

- Consortium of Texas Universities
- General Topics of Interest
- Proposed Research Topics
- Current university research (examples)
- Consortium expertise
- Q/A

Proposed Research Topics

- Advanced Power Grid Operation for Increased Reliability
- Intelligent Demand Side Load Management for Improved Efficiency
- Renewable Energy Resources for Sustainable Electricity Generation
- Distributed Electricity Generation for Increased Security

- Sensors and information systems
- Superconductive technologies
- Energy conversion
- Means for reactive power support
- Robotics for safer power grid
- Solid State Switching
- New IEDs for System Monitoring (PMUs and State Estimation)

Intelligent Demand-Side Load Management

- Control of Peak Power Consumption
 - Could help "shave" the peak
 - Could re-distribute the peak
- Building Energy management
 - Could beat current codes by 30%
 - Could cut energy use another 20%
- Emergency Power Control
 - Could create emergency power from alternative sources
 - Could allow aggregation of emergency generation for commercial uses

• 2004: National RES Study

- Texas has the capacity to produce eight times its own electricity needs from clean renewable energy sources
- Texas consumers would save more than \$9 billion on energy bills through 2020

Source: Union of Concerned Scientists 2004 Study

- Wind Electricity Generation
 Solar Electricity Generation
 Geothermal Electricity Generation
- Biomass Electricity Generation

Distributed Electricity Generation

Distributed Electricity Generation

 Individual components: fuel cells, microturbines, Batteries/converters, etc

- AC and DC microgrids
- Embedded microgrids into existing grid
- Monitoring, control and protection of distributed generation grids
- Optimal mix of fuels/conversion techniques for on-site power generation

- Consortium of Texas Universities
- General Topics of Interest
- Proposed Research Topics
- Current university research (examples)
- Consortium expertise
- Q/A

Future Control Infrastructure

TxCEE

- Consortium of Texas Universities
- General Topics of Interest
- Proposed Research Topics
- Current university research (examples)
- Consortium expertise
- Q/A

Consortium Expertise

TxCEE

- Texas A&M University: System studies; monitoring control and protection; power electronics and drives, advance machine designs, utility interfaces, reliability, building efficiency, renewable energy, IT technologies, intelligent systems, simulation and modeling,
- UT Austin: System studies, Power quality, elctromechanical conversion, energy markets, renewable energy, public policy, simulation and modelling, intelligent systems, IT technologies
- TAMU at Kingsville: Wind power, control systems, intelligent system applications, drives

- UT Arlington: System studies, electricity markets, protection and monitoring, power quality, renewable energy, load forecasting
- University of Houston: supeconductivity, system studies, transfer capability, load modeling, non-linear control, IT technology

 Texas Tech: Renewable energy, power electronics, utility interface, photovoltaics

Together -

building a prosperous future

where energy is clean, abundant, reliable and affordable