Oil and Gas Development Scenarios in Texas

ERCOT LTSA Workshop
May 16, 2017
Oil/Gas Market Fundamentals – Typical Cycles

- Higher prices discourage demand
- Lower prices encourage demand

Supply Excess
- Price Decreases
- Drilling Activity Decreases

Supply Shortfall
- Drilling Activity Increases
- Price Increases

Supply Excess
- Price Increases
- Drilling Activity Decreases

Higher prices discourage demand

Lower prices encourage demand

Source: Michelle Foss based on Tom Bates, Lime Rock

• Oil supply shortfall “fell short” because:
 - Iran, Iraq, Libya, ongoing projects
 - OPEC/Saudi policy
 - U.S. unconventional producers are nimble

• Demand growth might remain lackluster:
 - slower economic growth in China+
 - energy efficiency & conservation
 - alternative fuels
 - environmental factors
Crude oil is a global commodity...

Certainly global, but is it a “commodity”?
U.S. natural gas is not global but more of a commodity...

Will U.S. LNG exports “integrate” U.S. and world gas markets?
• When gas is “cheap” relative to oil:
 • LNG, GTL, CNG becomes attractive
 • Globally, natural gas is traded (pipelines or LNG) is priced linked to oil

• 2 large GTL facilities planned for LA cancelled
• Limited switching from diesel to LNG/CNG in transportation
• LNG exports “less” attractive...
Challenges Facing U.S. LNG Exports

- "Low" demand growth (China, India, Japan, and others):
 - Coal, nuclear, renewables have priority - energy security
 - Not enough gas infrastructure (especially storage)
 - Low gas market readiness
 - Sluggish economic growth
 - Japanese energy policy: nuclear, renewables, efficiency

- "Surging" global LNG supply ➔ excess supply until the early 2020s
 - Unsubscribed U.S. liquefaction capacity
 - Parts of contracted volumes not tied to specific destinations

U.S. Oil and Gas Production Proved Resilient

The rig count does not mean the same as before:
- Cluster drilling: more wells per rig
- Infill drilling:
 - less production per well but also lower cost
 - in areas with proven high productivity
- Focusing on best acreage

D&C and operating costs decreased significantly since 2014
- Sustainable?

Source: Baker Hughes rig and EIA production data.
Upstream Costs: Efficiency? Technology? Oil Price?

What percentage of these reductions are temporary?

http://www.ihs.com/info/cera/ihsindexes/index.aspx
TX: Rig Count (hence, production) Rebounding Fast

- Drilling is much more responsive to the oil price rather than the natural gas price
- 442 rigs in TX in early May 2017 versus 173 in May 2016 and 949 in August 2008

Source: Baker Hughes rig and EIA price data.
An oil (primarily, Permian) story!

- Oil and natural gas prices decoupled since the late 2000s
- Oil price recovered some after OPEC announcement in late 2016
- Gas price is still low ➔ gas-directed drilling remains anemic
- NGL prices traditionally linked to oil price; but today they are discounted, especially ethane ➔ “industrial renaissance”

Source: Baker Hughes rig data.
Summary of TX

Barnett: >20K wells 1995-now; peak drilling of 2,900+ in 2008 (100+ rigs); today only 5-6 rigs; gas core in Tarrant, Wise, Denton & Johnson; oil/liquids drilling in Montague, Cooke & Wise after 2010; ~8,000 mi\(^2\); BEG scenarios of 10K to 20K more wells through ~2040

Haynesville (TX): >1,000 wells 2008-now (including Bossier); peak of ~190 in 2011 (~30 rigs); today 37-38 (mostly in LA); San Augustine, Shelby, Nacogdoches, Harrison, Panola, Rusk (~2,000 mi\(^2\) in TX); BEG scenarios for all Haynesville of 5K to 10K more wells through ~2045

Eagle Ford: >10K wells 2008-now; peak of ~3,500 in 2013 (250+ rigs); hit low of 29 in May 2016; today ~80; Gonzalez, DeWitt, Karnes, Atascosa, McMullen, LaSalle, Dimmit, Webb; ~20,000 mi\(^2\); mostly focused on oil and condensate windows; gas window largely undeveloped but can be developed in the future with the right price environment

Permian: 4-5K per year 2011-14; peak of 560+ rigs in Oct14; hit low of 130 May 2016; today ~350; largest (~60,000 mi\(^2\) in TX) most complex (multiple formations); conventional and unconventional mixed; oil, gas & liquids; long history of drilling; activity to remain strong for years (as long as oil price remains “attractive”)

Midstream: pipelines for crude, liquids and natural gas; processing; fractionation. Long-distance pipelines to Gulf Coast from Permian, Marcellus and Cushing; gas export pipelines to Mexico.

Corpus Christi LNG: FID on 2 trains (4.5 MTPA each) in May 2015, production expected in 2018.

Freeport LNG (3 trains, 13.2 MTPA): construction started Nov14; first shipment from the first train in late 2018; trains 2 and 3 estimated in 2019

Downstream: 22 projects 2017-22, $29 billion; possibly 4 more, additional $7 billion

Several LPG, condensate and ethane export projects along the coast

Long-distance pipelines to Gulf Coast from Permian, Marcellus and Cushing; gas export pipelines to Mexico.
Oil & Gas Price Scenarios through 2030*

<table>
<thead>
<tr>
<th>Low oil ($50-60), low gas ($3-4)</th>
<th>Low oil ($50-60), high gas ($4-$5)</th>
<th>High oil ($60-90), high gas ($4-6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• OPEC/others fail to maintain production cuts</td>
<td>• OPEC/others fail to maintain production cuts</td>
<td>• OPEC/others maintain production cuts</td>
</tr>
<tr>
<td>• U.S. unconventional D&C costs remain low</td>
<td>• U.S. unconventional D&C costs recover some</td>
<td>• “Lasting” crises in Nigeria, Venezuela, Libya, Iraq, and/or Iran (not an exclusive list)</td>
</tr>
<tr>
<td>• Technological improvements</td>
<td>• Increasing cost of frac sand, rig rates</td>
<td>• U.S. unconventional D&C costs recover strongly</td>
</tr>
<tr>
<td>• Operational improvements</td>
<td>• Global oil demand slow to grow</td>
<td>• Increasing cost of frac sand, rig rates</td>
</tr>
<tr>
<td>• Low oil price</td>
<td>• Weak macroeconomics (China+)</td>
<td>• High oil price</td>
</tr>
<tr>
<td>• Global oil demand slow to grow</td>
<td>• Alternatives</td>
<td>• Depleting best geology</td>
</tr>
<tr>
<td>• Weak macroeconomics (China+)</td>
<td>• Efficiency gains</td>
<td>• Global oil demand grows stronger</td>
</tr>
<tr>
<td>• Alternatives</td>
<td>• Strong gas demand growth in the U.S.</td>
<td>• China and others recover</td>
</tr>
<tr>
<td>• Efficiency gains</td>
<td>• Slowing penetration of renewables</td>
<td>• Limited penetration by alternatives</td>
</tr>
<tr>
<td>• Gas demand slow to grow in the U.S.</td>
<td>• Coal & nuclear retirements</td>
<td>• Limited efficiency gains</td>
</tr>
<tr>
<td>• Renewables, efficiency</td>
<td>• Second wave of industrial renaissance</td>
<td>• Strong gas demand growth in the U.S.</td>
</tr>
<tr>
<td>• Saving nuclear, coal units</td>
<td>• LNG exports grow stronger</td>
<td>• Slowing penetration of renewables</td>
</tr>
<tr>
<td>• Stagnant load growth</td>
<td>• Global gas demand grows faster</td>
<td>• Coal & nuclear retirements</td>
</tr>
<tr>
<td>• Limits to industrial renaissance</td>
<td>• Pipeline exports to MX grow stronger</td>
<td>• Second wave of industrial renaissance</td>
</tr>
<tr>
<td>• LNG exports slow to grow</td>
<td>• Low oil price & cost increase ➔ less associated gas ➔ need higher gas price to drill for dry gas</td>
<td>• LNG exports grow stronger</td>
</tr>
<tr>
<td>• Too much liquefaction capacity globally</td>
<td></td>
<td>• Global gas demand grows fast</td>
</tr>
<tr>
<td>• Global gas demand slow to grow</td>
<td></td>
<td>• Pipeline exports to MX grow stronger</td>
</tr>
<tr>
<td>• Pipeline exports to MX grow as expected</td>
<td></td>
<td>• Higher cost, higher gas demand ➔ higher gas price</td>
</tr>
</tbody>
</table>

*Assume cyclicality; price movements above and below these ranges are likely. For example, 2020-25 may see oil price collapse if oil price recovers soon.
Gürcan Gülen
Senior Energy Economist
Bureau of Economic Geology’s
Center for Energy Economics
Jackson School of Geosciences
The University of Texas at Austin
713-654-5404 (o)
gurcan.gulen@beg.utexas.edu
www.beg.utexas.edu/energyecon
A Strong “Gas Demand Stack” Scenario v EIA AEO 2017

- Two largest uncertainties: Power generation and LNG exports
- Potential drivers:
 - Price of natural gas
 - Renewables generation
 - Declining costs
 - Federal subsidies?
 - Coal retirements
 - Env’t regulations?
 - Nuclear retirements
 - Aging fleet, rising costs, state subsidies
 - CO₂ prices
 - Load growth
 - EE, DER, DR

CEE analysis; EIA AEO 2017
CEE Industrial Projects Database - About 100 Projects; Incremental NG demand of ~3 BCFD
Our Portfolio and Examples

Hydrocarbons System:
- Upstream
 - Oil & Gas E&P
- Midstream
 - Transportation, storage, processing, shipping, LNG
- Downstream
 - Liquids, gas conversion, end use

Power System:
- Power Generation
- Transmission, distribution
- Power demand, end use

Upstream
- U.S. producer cost benchmarking
- CEE/World Bank NOCs
- BEG Sloan Foundation shale resource assessments
- Upstream regimes, HC sector governance (Shell; USAID; DOS-ENR)
- CO₂-EOR, carbon capture (BEG/GCCC, Texas FutureGen)
- Oil price drivers (USEIA)

Midstream
- Natural gas studies (OIES)
- LNG public knowledge base and economic, community benefits (Industry Donors)
- Midstream, MLP review (BEG STARR)
- ERCOT/US power dispatch scenarios (BEG STARR, Industry Donors)

Downstream
- Natural gas market for petrochemicals (MHTL)
- Industrial gas demand project inventory (BEG STARR)
- Texas renewables (State Energy Conservation Office)
- CEE gas demand stack (BEG STARR)

Notes:
- NOC=national oil company; GCCC=Gulf Coast Carbon Center; OIES=Oxford Institute for Energy Studies; STARR=State of Texas Advanced Resource Recovery Program; MLP=master limited partnership; MHTL=Methanol Holdings of Trinidad and Tobago Ltd.