ERCOT’S CHALLENGES & OPPORTUNITIES

Trip Doggett
President & CEO
ERCOT

Texas Public Power Association
August 01, 2012
• New Records at ERCOT
• 2012 Summer
• Resource Adequacy
• Wind Growth
• Demand Response
NEW RECORDS AT ERCOT

New Peak Demand Record: 68,379 megawatts
• 68,379 megawatts (MW), Aug. 3, 2011
• The 2010 peak demand – 65,776 MW, Aug. 23, 2010 – was broken 3 consecutive days:
 – Aug. 1, 2011 66,867 MW
 – Aug. 2, 2011 67,929 MW
 – Aug. 3, 2011 68,379 MW

New Weekend Record
• 65,159 MW, Sunday, Aug. 28
 – 5 percent increase over 2010 previous record – 62,320 MW

Winter Peak Record
• 57,315 MW (February 10, 2011)
 – 3 percent increase over 2010 previous record - 55,878 MW

Wind Record
• A new wind record of 8,368 MW occurred on June 19, 2012 at 19:25
 – Non-Coastal Wind = 7,381 MW (86.0% of installed capacity)
 – Coastal Wind = 987 MW (69.5% of installed capacity)
 – Wind was supplying 17.64% of the 47,452 MW load
2012 Summer
SUMMER 2012 WEATHER DEVELOPMENTS

La Niña (-) to El Nino (+)

Drought Patterns

Next phase ~ 2025

2012 + 10-15 years

Long Term Forecast – Contributing Factors
- Variations in SST (Sea Surface Temps)
 - El Niño (+) & La Niña (-)
 - Pacific Decadal Oscillation (PDO)
 - Atlantic Multidecadal Oscillation (AMO)
- Certain shorter term phenomena (e.g. North Atlantic Ocean Blocking) can only be forecasted 10-14 days out – such effects are not included in longer term forecasts

Multidecadal Influences

PDO Region

AMO Region

ENSO (El Nino or La Nina) region

ERCOT PUBLIC
Summer Weather Outlook

• 2011 an outlier for heat and drought
• El Niño expected this summer
• Past years (1951, 1963, 1976, 2006 & 2009), La Niña transitioned to El Niño during summer:
 – Warmer than normal temperatures
 – Lower than normal rainfall
• Climate models suggest:
 – Warmer spring followed by normal temperatures for summer
 – More variable rainfall from spring through summer
• Texas in more drought-prone period that could persist for next decade

2012 Storm Threat

• Early season storms expected in Gulf of Mexico due to above-normal water temperatures
• Lower seasonal threat
• El Niño-related wind shear increases later in the season to hinder storm development
What To Expect this Summer

- **Tight reserves = significant chance for multiple Energy Emergency Alerts**
 - Not likely to result in the need for rotating outages

- **If higher-than-normal number of forced generation outages during peak or record-breaking weather conditions similar to last summer, ERCOT system likely to have insufficient resources available**
 - Would result in the need for rotating outages to maintain grid stability

- **Improved drought conditions in many river basins**
 - Reservoir levels not expected to affect power plant operations this summer
 - Potential risks to generation capacity continue while Texas remains under drought conditions
<table>
<thead>
<tr>
<th>Item</th>
<th>Summer 2012</th>
<th>Base Case</th>
<th>Extreme Load & Typical Gen Outages</th>
<th>Extreme Load & Extreme Gen Outages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total Resources</td>
<td></td>
<td>73,853</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Base Case Peak Demand</td>
<td></td>
<td>67,492</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Uses of Reserve Capacity</td>
<td></td>
<td>3,790</td>
<td>7,371</td>
</tr>
<tr>
<td>4</td>
<td>Capacity Available for Operating Reserves* (1-2-3)</td>
<td></td>
<td>2,571</td>
<td>-1,010</td>
</tr>
<tr>
<td>5</td>
<td>Demand Adjustment during Scarcity**</td>
<td></td>
<td></td>
<td>750</td>
</tr>
<tr>
<td>6</td>
<td>Adjusted Capacity Available for Operating Reserves (4+5)</td>
<td></td>
<td>3,321</td>
<td>-260</td>
</tr>
</tbody>
</table>

*Less than 2300MW indicates risk of EEA1
**Represents effects of price responsive demand, conservation appeals, demand programs, etc. based on summer 2011 experience; does not include Load Resource or Emergency Response Service (ERS) activation
RESOURCE ADEQUACY
Annual Energy & Peak Demand (2003-2011)

Total 9-year Growth
- Energy – 17.5%
- Peak Demand – 13.8%

Annual Energy and Peak Demand

- **Year 2003**: 284,954 GWh
- **Year 2004**: 289,113 GWh
- **Year 2005**: 299,227 GWh
- **Year 2006**: 305,715 GWh
- **Year 2007**: 307,064 GWh
- **Year 2008**: 312,401 GWh
- **Year 2009**: 308,278 GWh
- **Year 2010**: 319,097 GWh
- **Year 2011**: 335,000 GWh

- **Peak Demand**
 - **Year 2003**: 60,095 MW
 - **Year 2004**: 58,531 MW
 - **Year 2005**: 60,274 MW
 - **Year 2006**: 62,339 MW
 - **Year 2007**: 62,188 MW
 - **Year 2008**: 62,174 MW
 - **Year 2009**: 63,400 MW
 - **Year 2010**: 65,776 MW
 - **Year 2011**: 68,379 MW

Growth
- Annual Energy: 17.5%
- Peak Demand: 13.8%

AUGUST 01, 2012
MAY 2012 CAPACITY, DEMAND AND RESERVES REPORT (CDR)

Firm Load Forecast + 13.75% Reserve

Firm Load Forecast

Resources

* FIS = Full Interconnection Studies

MW Currently Installed Resources
Natural Gas Projects under FIS
Wind Projects under FIS
Coal Projects under FIS
Other Fuel Projects under FIS
Solar Projects under FIS
Forecast
Forecast + Reserve

MW

MW

AUGUST 01, 2012

ERcot Public
2012 Peak Load Forecast – Sensitivity to Weather

Effect of Various Weather Years on 2012 Peak Forecast

ERCOT’s Normal Weather is based on the past 15 years (1997 – 2011)

Normal Weather* – 66,195 MW

<table>
<thead>
<tr>
<th>Base Weather Year</th>
<th>Peak Forecast (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002</td>
<td>62,101</td>
</tr>
<tr>
<td>2003</td>
<td>63,799</td>
</tr>
<tr>
<td>2004</td>
<td>60,891</td>
</tr>
<tr>
<td>2005</td>
<td>63,820</td>
</tr>
<tr>
<td>2006</td>
<td>66,396</td>
</tr>
<tr>
<td>2007</td>
<td>64,003</td>
</tr>
<tr>
<td>2008</td>
<td>64,188</td>
</tr>
<tr>
<td>2009</td>
<td>65,739</td>
</tr>
<tr>
<td>2010</td>
<td>67,492</td>
</tr>
<tr>
<td>2011</td>
<td>71,073</td>
</tr>
</tbody>
</table>

*ERCOT’s Normal Weather is based on the past 15 years (1997 – 2011)
ERCOT commissioned *The Brattle Group* to address three questions:

1. **Investors and their Investment Criteria**
 - Identify, describe, and rank the relevant factors that influence investment decisions made by the development and financial community related to new capacity additions, capacity retirements, and repowering projects in ERCOT.

2. **Market Outlook for Investment and Resource Adequacy**
 - Evaluate the current drivers from both a wholesale and retail perspective that influence resource investment decisions in the ERCOT market.

3. **Evaluation of Policy Options**
 - Provide suggestions for ways to enhance favorable investment outcomes for long-term resource adequacy in ERCOT.
• New investment in ERCOT is impeded by low wholesale prices, low natural gas prices, and an efficient existing generation fleet
• ERCOT’s current energy-only market is not likely to support sufficient investment to meet the resource adequacy target
• Reliability targets could be achieved with a significant increase in price-responsive demand – would likely take several years before a sufficient level of demand response could be achieved
• Based on large and uncertain gaps, either the market design needs to be adjusted or the reliability objectives revised
• Four policy options for attracting greater investment to support a higher reserve margins
 – Energy-only market with price adders
 – Energy-only market with backstop procurement
 – Resource adequacy requirements on load serving entities
 – Resource adequacy supported by a centralized forward capacity market
• Miscellaneous market design enhancements to better enable demand-side resources to participate, and to achieve efficient pricing during scarcity and non-scarcity conditions
• Online Non-Spin standing deployment & offer floor
• Offline Non-Spin offer floor
• Responsive Reserve & Regulation Up offer floor
• Institutionalized the process to recall mothball units for capacity
• Pricing of energy for Reliability Unit Commitment (RUC) units deployed for capacity at System Wide Offer Cap
• Expansion of Responsive Reserve with a corresponding reduction in Non-Spin
• Coordination of Load Management initiatives
• EILS service expanded to Emergency Response Service (ERS)
• Brattle Group Study
• Posting non-binding near real-time forward prices
• ERS 30-min Demand Response pilot
• System Wide Offer Cap raised to $4500 (effective Aug 1, 2012)
WIND GROWTH
The data presented here is based upon the latest registration data provided to ERCOT by the resource owners and can change without notice. Any capacity changes will be reflected in current and subsequent years' totals. Scheduling delays will also be reflected in the planned projects as that information is received.

This chart now reflects planned units in calendar year of installation rather than installation by peak of year shown.

- ERCOT is #1 in the U.S. in wind capacity.
- Our capacity is three times the amount of #2 (Iowa).
- If Texas were a separate country, we’d be #6 in the world.
FIRST INTERCONNECTION AGREEMENT FOR A CREZ SUBSTATION

- Transmission Plan designed to serve approximately 18GW:
 - ~4600 circuit miles of 345 kV
 - $6.7 billion project cost
- All line certification cases completed
 - Construction underway
 - All lines expected to be complete by end of 2013
- Lines are open-access; use not limited to wind

- Completed March 27, 2012, between Wind Energy Transmission Texas and Stephens Ranch Wind Energy
- Interconnection point is the Long Draw Substation in Borden County
- Wind farm will include 233 turbines for total of 377 MW
- Scheduled for commercial operations in November 2013

Competitive Renewable Energy Zones (CREZ)
Transmission Optimization Study
Figure 5: Scenario 2
DEMAND RESPONSE
LOAD DURATION CURVES – 2006 TO 2011

<table>
<thead>
<tr>
<th>Hours Over</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>55000 MW</td>
<td>249</td>
<td>109</td>
<td>230</td>
<td>344</td>
<td>426</td>
<td>849</td>
</tr>
<tr>
<td>60000 MW</td>
<td>38</td>
<td>8</td>
<td>17</td>
<td>76</td>
<td>113</td>
<td>382</td>
</tr>
<tr>
<td>65000 MW</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>75</td>
</tr>
</tbody>
</table>
Wednesday
March 9, 2011
5:15 PM
ERCOT Load: 31,262 MW
Temperature in Dallas: 64°

• Based on customer class breakdown in competitive choice areas and extrapolated to ERCOT
• Large C&I are IDR Meter Required (>700kW)

Residential 27.4%
(~8,500 MW)
Small Commercial 28.9%
Large C&I 43.7%

Residential 51.2%
(~35,000 MW)
Small Commercial 25.2%
Large C&I 23.7%

5:00 PM
ERCOT Load: 68,416 MW
Temperature in Dallas: 109°

Currently cannot qualify as Load Resources

• ERCOT staff is working on ALR enablement with market participants in both NOIE and competitive choice areas

Today we’re settling over 5.3 million advanced meters.

Advanced Meter Deployment Plan

June 2012
83.2% of the ERCOT Competitive Load settled with 15-min interval data (AMS and IDR)

Advanced meters give customers the data they need to make educated decisions about their electricity usage.
Potential for ALR (Aggregated Load Resource)

ALR
A collection of devices and/or premises capable of delivering demand response based on ERCOT market rules

<table>
<thead>
<tr>
<th>Load Management/Measurement Devices</th>
<th>Premises: C&I:</th>
</tr>
</thead>
<tbody>
<tr>
<td>HVAC</td>
<td>Pumping stations</td>
</tr>
<tr>
<td>Lighting</td>
<td>Retail chains</td>
</tr>
<tr>
<td>Refrigerators</td>
<td>Warehouses</td>
</tr>
<tr>
<td>Pumps</td>
<td>Office buildings</td>
</tr>
<tr>
<td>Other...</td>
<td>Light industrials</td>
</tr>
</tbody>
</table>

Residential:
- Thermostats
- Pool pumps
- Water heaters
- PEVs
- Etc....

QSE
- Financial counterparty with ERCOT
- Maintains telemetry from ALR to ERCOT
- Receives dispatch instructions and sends to ALR to provide demand response

ISO
- Procures Ancillary Services in the Day-Ahead Market
- Monitors grid conditions in real time
- Dispatches Ancillary Services according to needs
- Measures and verifies performance of DR resources

AUGUST 01, 2012
Small Customer ALR Hurdles

- **Network modeling**
 - LRs currently must tie to a single point on the system
 - Challenge for aggregations, especially with multiple REPs
- **Telemetry**
 - Full-time telemetry from each member of the aggregation is cost-prohibitive
- **Registration (managing population churn)**
- **Measurement & Verification**
 - Real-time M&V from telemetry data should be validated against after-the-fact 15-minute settlement data
- **Automated response & primary frequency response**
 - To qualify as a Controllable Load Resource (CLR), an ALR must provide the equivalent of governor response and must auto-respond to electronic signals from ERCOT
OUTREACH: ERCOT MOBILE APP GIVES REAL TIME GRID UPDATES

ERCOT Mobile App
- iPhone and Android Phone users
- Pop up notifications
- Applications for first release
 - Conservation Spotlight
 - Load Forecast versus Actual graph
 - ERCOT Conservation Tips
 - ERCOT Quick Facts
- Over 7900 downloads

ERCOT Quick Facts
- 85% of Texas electric load
- 40,530 circuit miles of high-voltage (138 kV/345 kV) transmission
- 550 generation units
- 73,600 MW peak capacity
- 68,379 MW record peak demand
- 335 billion kWh energy produced (2011)

Primary responsibilities (from Texas Legislature)
- System reliability (planning and operations)
- Open access to transmission
- Retail switching process for customer choice
- Wholesale market settlement for electricity production and delivery

Wind power leader
- 9,600 MW capacity (most in nation)
- 2,000 MW coastal wind power (on-peak availability)