The System of Systems Architecture (SoSA) is a technique for modeling a complex system that is itself comprised of complex systems. The value of this approach comes from its ability to look at customers of Nodal and how they expect to operate in a Nodal Market. We believe this approach will provide TPTF and ERCOT a holistic view of Nodal and the means to ensure that the requirements of the individual projects effectively integrate to meet the needs of the Nodal Market.

What are the benefits?
The key benefits of the System of Systems Architecture approach are:

1. The use cases, requirements and interfaces defined by the projects can be validated against the Enterprise Use Cases.
2. Application interfaces can be clearly distinguished and described in terms of attributes and operations.
3. The System of Systems model can be used to derive end-to-end test cases for the Nodal program.
4. The Enterprise Level architecture provides ERCOT and TPTF with a context that can ensure complete coverage of the Nodal protocols by each individual system component.

Use Case Flow Down
The Nodal System of Systems model started with the ERCOT business architects deriving the top level services (Use Cases) that Nodal provides to the Market and other external entities (Actors) from the Protocols. This list of services were analyzed and refined by the business architects and the SoSA team. These service or use case names make up the Enterprise Use Cases included in the handout in the middle of this booklet.

The project team then worked on the **Enterprise Use Case Specifications**. Each specification lists the major actions necessary to perform the use case and all of the alternate actions. The use case specifications are structured into the main success scenario and alternate flows. Each action that requires a interaction between the Market (and other external entities) and Nodal forms the basis for a request on the Black Box Sequence Diagram which may or may not involve a response.

Next we built the **Black Box Sequence Diagrams** to show the flow of the requests that pass between Nodal and the Market (and other external entities). These requests form the basis for the Enterprise Level operations.

The team then took each Enterprise Level Operations and produced an **Operation Specification**. The Operation Specification documents the actions necessary to complete the operation and describes the interactions between the systems and the external entities. These actions form the basis for the requests in the White Box Sequence diagrams.

The last part of the Enterprise Level work is producing the **White Box Sequence Diagrams**. These diagrams depict the flow of requests between the systems, and between the systems and the external entities.

This process of decomposition using the Operations Specification and White Box Sequence diagram continues until the level of detail required to generate the solution is reached. For Nodal, we will complete the Enterprise Level White Box Sequence Diagrams and reconcile these with the use cases developed by the projects.
Use Case Flow Down Diagrams and reconcile these with the use Enterprise Level reached. For Nodal, we will complete the detail required to generate the solution is Operations Specification and This process of decomposition using the systems and the external entities. Operation

4. White Box Sequence diagrams. The System of Systems model can be used to derive end-to-end test cases for the Nodal program.

2. Step two of the main flow.

1. Step one of the main flow.

3. Step three

Main Success Scenario:

Enterprise White Box Sequence Diagram

Levels in the Nodal System of Systems Model

Enterprise Level

System Level

Component Level

Defined by the Projects, examples could be SCED, LFC, Data Aggregation

Enterprise Level Actors

© 2006. The Electric Reliability Council of Texas, Inc.
Enterprise Level Use Case Specification: Perform Day Ahead Financial Transfer

Perform Day Ahead Financial Transfer Use Case

Brief Description:
Perform Day Ahead Financial Transfer Use Case begins when the time arrives to generate the statements and invoices and concludes when the System has distributed credits.

Preconditions:
None

Post Conditions:
Settlement Statements and Invoices are posted.

Main Success Scenario
1. Time requests System generate Settlement Statements and Invoices
2. System begins DA Settlement batch processing
4. System presents approved Settlement Statement and invoice to QSE.
5. Invoice Recipient pays DA invoice by due date.
6. System applies payments received to Invoice Recipients by 1700 of day received.
7. System sends out credits to invoice recipients by 1700 next business day.
8. Use case ends.

Alternate Flows
2.a. Create DA Late Fee Invoices on the 10th of each month (9.4.5)
1. Time requests System generate Late Fee Invoices
2. System aggregates late fees from previous month.
3. System presents validated, approved invoices to invoice recipients by 23:59:59
4. System sends out DA Late Fee credits to invoice recipients by 1700 next business day.
5. Return to Main Flow, Step 2.

3.a. System doesn't approve statements or invoices
1. System resolves issues
2. System prepares corrected Settlement Statement and invoice

4.a. QSE doesn’t pay by due date
1. System calculates short pay amount.
2. System notifies QSE of enforcement action.

4.a.3.a. Enforcement action initiated (16.11.6.1)
1. System notifies QSE of increased financial security requirements.
Syntax of the Use Case Specification

a1. Step one in the alternate flow
2.a. Anchored Main Success Scenario:
The state the system should be in for this use case to start.

Step two of the main flow
Step one of the main flow

4.a. QSE doesn't pay by due date

2. Alternate Flows

Main Success Scenario
Settlement Statements and Invoices are posted.
Post Conditions:
None
Preconditions:
Brief Description:
Perform Day Ahead Financial Transfer

System notifies QSE of increased financial security requirements.
Return to Main Flow
System calculates short pay amount.
Return to Main Flow
System prepares corrected Settlement Statement and invoice
System resolves issues
System sends out DA
System applies payments received to invoice recipients by 1700 of day received.
Invoice Recipient pays DA
System presents validated, approved invoices to invoice recipients by 23:59:59
System aggregates late fees from previous month.
Time requests System generate Settlement Statements and Invoices
System sends out credits to invoice recipients by 1700 next business day
System applies payments received to Invoice Recipients by 1700 of day received.
System prepares DA
System begins DA
Time requests
System generate Settlement Statements and Invoices
System sends out credits to invoice recipients by 1700 next business day
System applies payments received to Invoice Recipients by 1700 of day received.
System prepares DA
System begins DA

What is the Black Box Sequence Diagram?
The Black Box Sequence Diagrams take the Use Case Specification and converts it to a series of requests between the entities mentioned in the specification. It covers the Main Success Scenario and all of the Alternate Flows.

The vertical lines ("Lifelines") each represent the different entities involved in the use case. The horizontal lines represent the requests from the initiator to the performer. For example, in the Black Box Sequence Diagram below, to read the first request you would say "Time requests that Nodal generate settlement statements, invoices, and late fees".

The Alternate Flows are contained in the box below the Main Success Scenario and marked with the condition when the alternative would be applied.

Syntax of the Black Box Sequence Diagram

What is the Black Box Sequence Diagram? The Black Box Sequence Diagrams take the Use Case Specification and converts it to a series of requests between the entities mentioned in the specification. It covers the Main Success Scenario and all of the Alternate Flows.

The vertical lines ("Lifelines") each represent the different entities involved in the use case. The horizontal lines represent the requests from the initiator to the performer. For example, in the Black Box Sequence Diagram below, to read the first request you would say "Time requests that Nodal generate settlement statements, invoices, and late fees".

The Alternate Flows are contained in the box below the Main Success Scenario and marked with the condition when the alternative would be applied.

Syntax of the Black Box Sequence Diagram

What is the Black Box Sequence Diagram? The Black Box Sequence Diagrams take the Use Case Specification and converts it to a series of requests between the entities mentioned in the specification. It covers the Main Success Scenario and all of the Alternate Flows.

The vertical lines ("Lifelines") each represent the different entities involved in the use case. The horizontal lines represent the requests from the initiator to the performer. For example, in the Black Box Sequence Diagram below, to read the first request you would say "Time requests that Nodal generate settlement statements, invoices, and late fees".

The Alternate Flows are contained in the box below the Main Success Scenario and marked with the condition when the alternative would be applied.

Syntax of the Black Box Sequence Diagram

What is the Black Box Sequence Diagram? The Black Box Sequence Diagrams take the Use Case Specification and converts it to a series of requests between the entities mentioned in the specification. It covers the Main Success Scenario and all of the Alternate Flows.

The vertical lines ("Lifelines") each represent the different entities involved in the use case. The horizontal lines represent the requests from the initiator to the performer. For example, in the Black Box Sequence Diagram below, to read the first request you would say "Time requests that Nodal generate settlement statements, invoices, and late fees".

The Alternate Flows are contained in the box below the Main Success Scenario and marked with the condition when the alternative would be applied.

Syntax of the Black Box Sequence Diagram

What is the Black Box Sequence Diagram? The Black Box Sequence Diagrams take the Use Case Specification and converts it to a series of requests between the entities mentioned in the specification. It covers the Main Success Scenario and all of the Alternate Flows.

The vertical lines ("Lifelines") each represent the different entities involved in the use case. The horizontal lines represent the requests from the initiator to the performer. For example, in the Black Box Sequence Diagram below, to read the first request you would say "Time requests that Nodal generate settlement statements, invoices, and late fees".

The Alternate Flows are contained in the box below the Main Success Scenario and marked with the condition when the alternative would be applied.

Syntax of the Black Box Sequence Diagram

What is the Black Box Sequence Diagram? The Black Box Sequence Diagrams take the Use Case Specification and converts it to a series of requests between the entities mentioned in the specification. It covers the Main Success Scenario and all of the Alternate Flows.

The vertical lines ("Lifelines") each represent the different entities involved in the use case. The horizontal lines represent the requests from the initiator to the performer. For example, in the Black Box Sequence Diagram below, to read the first request you would say "Time requests that Nodal generate settlement statements, invoices, and late fees".

The Alternate Flows are contained in the box below the Main Success Scenario and marked with the condition when the alternative would be applied.

Syntax of the Black Box Sequence Diagram

What is the Black Box Sequence Diagram? The Black Box Sequence Diagrams take the Use Case Specification and converts it to a series of requests between the entities mentioned in the specification. It covers the Main Success Scenario and all of the Alternate Flows.

The vertical lines ("Lifelines") each represent the different entities involved in the use case. The horizontal lines represent the requests from the initiator to the performer. For example, in the Black Box Sequence Diagram below, to read the first request you would say "Time requests that Nodal generate settlement statements, invoices, and late fees".

The Alternate Flows are contained in the box below the Main Success Scenario and marked with the condition when the alternative would be applied.

Syntax of the Black Box Sequence Diagram

What is the Black Box Sequence Diagram? The Black Box Sequence Diagrams take the Use Case Specification and converts it to a series of requests between the entities mentioned in the specification. It covers the Main Success Scenario and all of the Alternate Flows.

The vertical lines ("Lifelines") each represent the different entities involved in the use case. The horizontal lines represent the requests from the initiator to the performer. For example, in the Black Box Sequence Diagram below, to read the first request you would say "Time requests that Nodal generate settlement statements, invoices, and late fees".

The Alternate Flows are contained in the box below the Main Success Scenario and marked with the condition when the alternative would be applied.

Syntax of the Black Box Sequence Diagram

What is the Black Box Sequence Diagram? The Black Box Sequence Diagrams take the Use Case Specification and converts it to a series of requests between the entities mentioned in the specification. It covers the Main Success Scenario and all of the Alternate Flows.

The vertical lines ("Lifelines") each represent the different entities involved in the use case. The horizontal lines represent the requests from the initiator to the performer. For example, in the Black Box Sequence Diagram below, to read the first request you would say "Time requests that Nodal generate settlement statements, invoices, and late fees".

The Alternate Flows are contained in the box below the Main Success Scenario and marked with the condition when the alternative would be applied.

Syntax of the Black Box Sequence Diagram

What is the Black Box Sequence Diagram? The Black Box Sequence Diagrams take the Use Case Specification and converts it to a series of requests between the entities mentioned in the specification. It covers the Main Success Scenario and all of the Alternate Flows.

The vertical lines ("Lifelines") each represent the different entities involved in the use case. The horizontal lines represent the requests from the initiator to the performer. For example, in the Black Box Sequence Diagram below, to read the first request you would say "Time requests that Nodal generate settlement statements, invoices, and late fees".

The Alternate Flows are contained in the box below the Main Success Scenario and marked with the condition when the alternative would be applied.

Syntax of the Black Box Sequence Diagram

What is the Black Box Sequence Diagram? The Black Box Sequence Diagrams take the Use Case Specification and converts it to a series of requests between the entities mentioned in the specification. It covers the Main Success Scenario and all of the Alternate Flows.

The vertical lines ("Lifelines") each represent the different entities involved in the use case. The horizontal lines represent the requests from the initiator to the performer. For example, in the Black Box Sequence Diagram below, to read the first request you would say "Time requests that Nodal generate settlement statements, invoices, and late fees".

The Alternate Flows are contained in the box below the Main Success Scenario and marked with the condition when the alternative would be applied.
What is the Operation Specification?

The Operation Specification takes a request made of Nodal and breaks it down into the interactions between the system components at that level. There may be more than one Operation Specification for a use case. For the Nodal SoSA effort 27 use cases resulted in 57 Enterprise Operations and therefore 57 Operation Specifications. An operation may also be part of more than one use case. For example, the "Drop Payment" operation is part of all of the "Financial Transfer" use cases.

Enterprise Level Operation Specification: Drop Payment

<table>
<thead>
<tr>
<th>Actor Action</th>
<th>Black Box Step</th>
<th>Step</th>
<th>Subsystem Action</th>
<th>White Box Budgeted Requirements</th>
<th>Locality</th>
<th>Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actor requests System Drop payment</td>
<td>System applies payments received to Invoice Recipients by 1700 of day received (verify with CM).</td>
<td>1.</td>
<td>Actor requests FT drop payments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System sends out credits to invoice recipients by 1700 next business day.</td>
<td>2.</td>
<td>FT updates S&B</td>
<td>By 1700 of day received</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.</td>
<td>S&B calculates credits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.</td>
<td>FT requests recipients to “Apply Credit”.</td>
<td>By 1700 of day after receipt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Invoice Recipient doesn’t pay invoice by due date]</td>
<td>System sends “Failure to Pay” notice to Invoice Recipient.</td>
<td>1.</td>
<td>FT sends Late Pay info to S&B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.</td>
<td>FT sends “Failure to Pay” notice to Invoice Recipient contact.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[QSE doesn’t pay by within 2 days after Due Date]</td>
<td>System sends “Default and Termination of Agreement” notice to QSE, QSE no longer in market.</td>
<td>1.</td>
<td>Legal sends “Default and Termination of Agreement” notice to QSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System initiates drop to POLR process – notifies POLR QSE of customer transfer.</td>
<td>2.</td>
<td>Legal notifies Registration that QSE is not in Market</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>System transfers customers to POLR QSE</td>
<td>3.</td>
<td>Registration initiates drop to POLR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.</td>
<td>Registration notifies POLR of switches</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Increased Financial Security required]</td>
<td>System notifies QSE of increased financial security requirements</td>
<td>1.</td>
<td>FT notifies QSE of increased financial security requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What is the White Box Sequence Diagram?

The White Box Sequence Diagram documents the flow of **requests** between **System** components and the external **Actor**. This flow shows the collaboration of Systems required to meet the objectives of the initiating request. The White Box Sequence Diagram is similar to the Black Box Sequence Diagram but instead of being based on the Use Case Specification, it is based on the Operation Specification.

Syntax of the White Box Sequence Diagram

Enterprise Level White Box Sequence Diagram: Drop Payment

- **Drop Payments**
- **[Debit Invoice Recipient]**
- **[Credit Invoice Recipient]**
- **[FTR]**
- **[S&G]**
- **[Registration]**
- **[Legal]**
- **[Four]**

1. **Drop payment**
 - 1.1: Apply payment
 - 1.2: Apply credit

 [Invoice recipient does not pay by due date]
 - 1: Update with non-payment
 - 1.1: Pay invoice (*Failure to pay* notice)

 [Invoice recipient does not pay within 2 days after due date]
 - 1: Send *Default and Termination of Agreement* notice
 - 1.1: Pay invoice (*Default and Termination of Agreement* notice)
 - 1.2: Terminate agreement
 - 1.2.1: Serve customers

 [Increased financial security required]
 - 1: Post more collateral
Validating System Requirements Using SoSA

Nodal requirements are produced at the component and system levels by analyzing the protocols and other binding documents. These requirements are then expressed as use cases, and these uses cases are then tested using test cases derived from the requirements and corresponding use cases. These requirements, uses cases and test cases express requirements at the System Level, for example EMS, MMS etc.

The System of Systems approach begins by creating use cases at the Nodal Enterprise Level. These complete uses are then broken down into requests between the market and Nodal (Black Box Operations) and requests between systems inside the Nodal (white box operations). These black box and white box operations describe the interactions required to provide a complete solution for an end-to-end usage of Nodal by the market.

These operations are then verified with the projects' Uses Cases to ensure that all requests have been covered and all uses of the Nodal system have been captured in the SoSA Enterprise Level Use Cases.

This verification between the individual projects requirements and use cases, and the System of Systems model is one of the key benefits of the System of Systems approach.
Modeling integration in the System of Systems Architecture

An important benefit of the System of Systems model is its ability to identify and document interactions between the system components and the interactions with the Market. As part of the next iteration of the System of Systems model, we will be modeling the integration approach for each System-to-System and Market-to-System interaction. This will be done by adding the Integration Layer as a System in the SoSA model.

The example below shows how the Integration Layer can be added into the White Box Sequence diagram to show which requests flow through the integration layer. Each operation on the Integration Layer then becomes a requirement for the integration team. Each operation is then documented by the Integration Team showing the transformation, auditing, security, reliability, monitoring, and management decisions made for this particular integration.

The type of requests between internal and external systems will determine the scope of the Integration Layer. The integration team will use System of Systems as a means to identify the requests that will communicate point to point (for example ICCT) and requests that communicate through the Integration Layer.

The diagram below shows the effect of adding the Integration Layer to the design of the Nodal systems. You can now see that System 1 and System 2 communicate point to point but all other systems, in this example, communicate through the Integration Layer.